
For Use with Simulink®

User’s Guide
Version 1

MATLAB® Link for Code Composer Studio®

Development Tools

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Link for Code Composer Studio Development Tools User’s Guide
 COPYRIGHT 2002-2003 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 2002 Online only New for Version 1.0 (Release 13)
Printing History: October 2002 Online only New for Version 1.1
Printing History: May 2003 Online only New for Version 1.2
Printing History: September 2003 Online only New for Version 1.3 (Release 13SP1+)

Contents
Preface

About MATLAB Link for Code Composer Studio
Development Tools . viii

Related Products . xi

Using This Guide . xii
Expected Background . xii
Organization of the Document . xiii

Configuration Information . xiv

Typographical Conventions . xvi

1
Introducing Links and Embedded Objects

Requirements for MATLAB Link for
Code Composer Studio . 1-3

Platform Requirements—Hardware and Operating System . . 1-3

Constructing Link Objects . 1-7

Properties and Property Values . 1-9
Setting and Retrieving Property Values 1-9
Setting Property Values Directly at Construction 1-9
Setting Property Values with set . 1-10
Retrieving Properties with get . 1-11
Direct Property Referencing to Set and Get Values 1-12

Overloaded Functions for Links . 1-14
i

ii Contents
Link Properties . 1-15
Quick Reference to Link Properties . 1-15
Details About the Link Properties . 1-17

Tutorial 1-1—Using Links and Embedded Objects 1-23
Introducing the Tutorial . 1-23
Selecting Your Target . 1-26
Creating and Querying Links for CCS IDE 1-27
Loading Files into CCS . 1-29
Working with Links and Data . 1-32
Working with Embedded Objects . 1-37
Closing the Links or Cleaning Up CCS IDE 1-46

Tutorial 1-2—Using Links for RTDX 1-48
Introducing the Tutorial for Using RTDX 1-48
Creating the Links . 1-52
Configuring Communications Channels 1-54
Running the Application . 1-56
Closing the Links or Cleaning Up . 1-63
Listing the Functions for Links . 1-67

2
About Objects for MATLAB Link Software

Introduction to Objects . 2-3
Some Object-Oriented Programming Terms 2-5
About the Relationships Between Objects 2-9
Class Diagrams for the MATLAB Link for
Code Composer Studio . 2-12

Numeric Objects—Their Methods and Properties 2-17
Properties of Numeric Objects . 2-17
Methods of Numeric Objects . 2-18

Bitfield Objects—Their Methods and Properties 2-20
Properties of Bitfield Objects . 2-20
Methods of Bitfield Objects . 2-22

Enum Objects—Their Methods and Properties 2-23
Properties of Enum Objects . 2-23
Methods of Enum Objects . 2-24

Pointer Objects—Their Methods and Properties 2-26
Properties of Pointer Objects . 2-26
Methods of Pointer Objects . 2-27

String Objects—Their Methods and Properties 2-29
Properties of String Objects . 2-29
Methods of String Objects . 2-30

Rnumeric Objects—Their Methods and Properties 2-32
Properties of Rnumeric Objects . 2-32
Methods of Rnumeric Objects . 2-33

Renum Objects—Their Methods and Properties 2-35
Properties of Renum Objects . 2-35
Methods of Renum Objects . 2-38

Rpointer Objects—Their Methods and Properties 2-39
Properties of Rpointer Objects . 2-39
Methods of Rpointer Objects . 2-40

Rstring Objects—Their Methods and Properties 2-42
Properties of Rstring Objects . 2-42
Methods of Rstring Objects . 2-43

Function Objects—Their Methods and Properties 2-45
Properties of Function Objects . 2-45
Methods of Function Objects . 2-46

Structure Objects—Their Methods and Properties 2-49
Properties of Structure Objects . 2-49
Methods of Structure Objects . 2-50

Type Objects—Their Methods and Properties 2-51
Properties of Type Objects . 2-51
Methods of Type Objects . 2-52
iii

iv Contents
Constructing Objects That Access Bitfields 2-53

Creating Function Objects . 2-55
When to Use declare to Provide the Function Declaration . . . 2-56
Differences Between Objects for Library Functions and
C Functions . 2-57
Examples of Creating Function Objects 2-58

Creating Type Objects . 2-71
Working with Type Definitions in Projects 2-71

Tutorial 2-1—Using Function Objects and
Hardware-in-the-Loop . 2-74

Introducing the Tutorial . 2-75
To Run the Hardware-in-the-Loop Tutorial 2-77
Select Your Target and Load the Tutorial Project 2-79
Initialize the Embedded C Variables and Use read and write 2-82
Use read, write, cast, and convert with Objects 2-87
Construct a function object . 2-91
Use Methods That Work with Function Objects 2-93
Construct Different Objects and Work with Them 2-98
Close The Tutorial and Clean Up . 2-103

Managing Custom Data Types with the
Data Type Manager . 2-105

Adding Custom Type Definitions to MATLAB 2-107

Reference for the Properties of Embedded Objects 2-114
Property Reference Format and Contents 2-114
address . 2-114
apiversion . 2-115
arrayorder . 2-116
binarypt . 2-117
bitsperstorageunit . 2-117
boardnum . 2-118
ccsappexe . 2-118
charconversion . 2-119
endianness . 2-119
filename . 2-121

inputnames . 2-121
inputvars . 2-122
label . 2-122
link . 2-123
Member . 2-124
Membname . 2-125
memboffset . 2-126
name . 2-128
numberofstorageunits . 2-128
numchannels . 2-128
offset . 2-130
outputvar . 2-130
page . 2-130
postpad . 2-131
prepad . 2-132
procnum . 2-132
represent . 2-133
rtdx . 2-135
rtdxchannel . 2-136
size . 2-137
savedregisters . 2-138
storageunitspervalue . 2-138
timeout . 2-140
type . 2-141
typelist . 2-141
typename . 2-141
typestring . 2-142
value . 2-142
wordsize . 2-143

3
Link Functions Reference

Using the Link Function Reference . 3-2
Contents of Function Reference Pages . 3-2

Tables of Link Software Functions . 3-3
v

vi Contents
Link Functions—Alphabetical List . 3-8

Functions—Alphabetical List . 3-9

A
Hardware Supported by MATLAB Link for CCS

Introduction to Supported Hardware A-2
Supported Hardware for Links to CCS IDE and RTDX A-2
Link Features Supported By Each Hardware or
Simulator Family . A-3

Preface

About MATLAB Link for Code
Composer Studio Development Tools
(p. viii)

Presents an overview of the product

Related Products (p. xi) Introduces products that expand the capabilities of this
toolbox

Using This Guide (p. xii) Describes this User’s Guide, its organization, and things
you should know

Configuration Information (p. xiv) Points out how to tell if this product is installed on your
computer

Typographical Conventions (p. xvi) Explains the way we use different fonts to mean different
things, such as variables or functions

 Preface

vii
About MATLAB Link for Code Composer Studio
Development Tools

MATLAB Link for Code Composer Studio Development Tools lets you use
MATLAB functions to communicate with Code Composer Studio® and with
information stored in memory and registers on a target. With the links you can
transfer information to and from Code Composer Studio and with the
embedded objects you get information about data and functions stored in your
signal processor memory and registers, as well as information about functions
in your project.

Note Both the links and the embedded objects are objects, and you work with
them in the same way you use all MATLAB objects. You can set and get their
properties, and use their methods to change them or manipulate them.

With MATLAB Link for Code Composer Studio, you create two kinds of objects:

• Links that connect MATLAB to Code Composer Studio. For information
about using links, refer to “Requirements for MATLAB Link for Code
Composer Studio” on page 1-3.

• Embedded objects you create that provide access to data and functions in
your project in Code Composer Studio and on your target. The link objects let
you use the embedded objects to access your target. Refer to “About Objects
for MATLAB Link Software” on page 2-1 for more information about using
the embedded objects, their properties, and their methods.

Specific Link Features Supported For Each Board Family
Within the collection of hardware that MATLAB Link for Code Composer
Studio supports, some features of the link do not apply. In the next table, each
board family appears with headings that specify the support provided. The
information here is general according to the processor family. For details about
i

About MATLAB Link for Code Composer Studio Development Tools
the support for processors within a family, such as the C24xx, refer to
“Hardware Supported by MATLAB Link for CCS” on page A-1

Debug mode includes those operations that CCS handles and that MATLAB
Link for Code Composer Studio enables you to use from MATLAB—a yes tells
you that the listed hardware supports MATLAB interaction with CCS.
Embedded objects support indicates that the board family supports using
objects in MATLAB to work with symbol table entries in CCS. A yes in the
Hardware-in-the-Loop column means the board family supports using function
objects to run functions on your target from MATLAB.

MATLAB Link for Code Composer Studio provides four components that work
with and use CCS IDE and TI Real-Time Data Exchange (RTDX™):

• Link for Code Composer Studio IDE — lets you use objects to create links
between CCS IDE and MATLAB ®. From the command window, you can run
applications in CCS IDE, send to and receive data from target memory, and
check the processor status, as well as other functions such as starting and
stopping applications running on your digital signal processors.

• Link for Real-Time Data Exchange Interface — provides a communications
pathway between MATLAB and digital signal processors installed on your
PC. Using objects in the MATLAB Link for Code Composer Studio, you open
channels to processors on boards in your computer and send and retrieve
data about the processors and executing applications, as well as send data to
the processes for use and get data from the applications.

Some Board Families Do Not Support Full MATLAB Link for Code Composer Studio Functions

Board Family Hardware/
Simulators?

Debug
Mode?

Embedded
Objects?

Hardware-in-the-Loop? RTDX

C2xx Yes/No Yes No No No

C54x Yes/Yes Yes Yes Yes Yes

C55x Yes/Yes Yes Yes No Yes

C6x Yes/Yes Yes Yes Yes Yes

TMS470Rxx Yes/Yes Yes Yes No No
ix

 Preface

x

• Embedded Objects—provides object methods and properties that let you
access and manipulate information stored in memory and registers on digital
signal processors, or in your Code Composer Studio project. From MATLAB
you gather information from you project, work with the information in
MATLAB, doing things like converting data types, creating function
declarations, or changing values, and return the information to your
project—all from the MATLAB command line.

• Hardware-in-the-Loop—enables you to write scripts in MATLAB that
exercise functions from your project on your target processor. From
MATLAB, you can generate data, send the data to your target and use a C
function in your program to manipulate the data on your hardware or
simulator. Afterwards, you return the output to MATLAB so you can analyze
the results.

Related Products
Related Products
The MathWorks provides several products that are especially relevant to the
tasks you can perform with the MATLAB Link for Code Composer Studio.

For information about the products and hardware you need to run the
MATLAB Link for Code Composer Studio, refer to “Requirements for MATLAB
Link for Code Composer Studio” on page 1-3.

For more information about any of these products, refer to either

• The online documentation for that product, if it is installed or you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com. Navigate to the
“products” area

Note The toolboxes listed below include functions that extend MATLAB
capabilities. The blocksets include blocks that extend Simulink® capabilities.

Product Description

Control System Toolbox Design and analyze feedback control systems

Data Acquisition Toolbox Capture and send data from plug-in data
acquisition boards

DSP Blockset Design and simulate DSP systems

Embedded Target for the
TI TMS320C6000 DSP
Platform

Use Simulink and the Real-Time Workshop to
create models and generate target-specific
code for supported TI hardware

Filter Design Toolbox Design and analyze advanced floating-point
and fixed-point filters

Image Processing
Toolbox

Perform image processing, analysis, and
algorithm development
xi

 Preface

xii
Using This Guide

Expected Background
This document introduces you to using MATLAB Link for Code Composer
Studio Development Tools. To get the most out of this manual, readers should
be familiar with MATLAB and its associated programs, such as DSP Blockset
and Simulink. We do not discuss details of digital signal processor operations
and applications. For more information about digital signal processing, you
may find one or more of the following books helpful:

• McClellan, J. H., R. W. Schafer, and M. A. Yoder, “DSP First: A Multimedia
Approach,” Prentice Hall, 1998.

• Lapsley, P., J. Bier, A. Sholam, and E. A. Lee, “DSP Processor Fundamentals
Architectures and Features,” IEEE Press, 1997.

• Steiglitz, K, “A Digital Signal Processing Primer,” Addison-Wesley
Publishing Company, 1996.

For information about Code Composer Studio and Real-Time Data Exchange™
(RTDX™), refer to your Texas Instruments documentation for each product.

If You Are a New User
New users should read “Requirements for MATLAB Link for Code Composer
Studio” on page 1-3. This introduces the MATLAB Link for Code Composer
Studio environment — the required software and hardware, installation
requirements, and the board configuration settings that you need. To introduce
the links ideas, the section includes discussions about objects and tutorials
about using links and RTDX.

If You Are an Experienced User
All users should read “Introduction to Objects” on page 2-3 for information and
examples about embedded objects, such as the properties and methods of each
object, and a tutorial about working with your CCS project from MATLAB. As
experienced users, you know about the link object that enables
communications between MATLAB and Code Composer Studio. This section
offers details about the objects for getting access to and manipulating the
contents of memory, storage registers, and functions in projects in Code
Composer Studio. Using the objects is the first step towards providing you with
hardware-in-the-loop capability while you develop your applications.

Using This Guide
Organization of the Document

Chapter Description

Preface Introduces the MATLAB Link for Code Composer
Studio Development Tools environment — the software
and hardware you need, and the related products that
may be of interest.

Introducing
Links and
Embedded
Objects

Provides information about using the link software to
connect to Texas Instruments Code Composer Studio
Integrated Development Environment and to open
Real-Time Data Exchange channels to target digital
signal processors.

About Objects
for MATLAB
Link Software

Reveals the secrets and detail about the embedded
objects in the software. Here you find descriptions of the
properties and methods for each object you create in
MATLAB.

Link Functions
Reference

Provides reference information for the functions in the
MATLAB Link for Code Composer Studio. The functions
listed work with the links for RTDX Interface and CCS
IDE Interface.
xiii

 Preface

xiv
Configuration Information
To determine whether the MATLAB Link for Code Composer Studio is
installed on your system, type this command at the MATLAB prompt.

help ccslink

When you enter this command, MATLAB displays the contents of the product,
the first few lines of which are shown here. What you see should look similar,
although the product version numbers change.

Link for Code Composer Studio(tm)
Version 1.1 (R13) 19-Apr-2002

Methods for Link for Code Composer Studio
ccshelp/ccsdsp - Construct CCS object.

If you do not see the listing, or MATLAB does not recognize the command, you
need to install the MATLAB Link for Code Composer Studio. Without the
software, you cannot use MATLAB with the links to communicate with Code
Composer Studio.

Note For up-to-date information about system requirements, refer to the
system requirements page, available in the products area at the MathWorks
Web site (http://www.mathworks.com).

To verify that CCS is installed on your machine, enter

ccsboardinfo

at the MATLAB command line. With CCS installed and configured, MATLAB
returns information about the boards that CCS recognizes on your machine, in
a form similar to the following listing.

Board Board Proc Processor Processor
 Num Name Num Name Type
 --- ---------------------------------- --- -------------------------------
 1 C6xxx Simulator (Texas Instrum ... 0 6701 TMS320C6701
 0 C6x11 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

Configuration Information
As a final test, start CCS to ensure that it starts up successfully. For the
MATLAB Link for Code Composer Studio to operate with CCS, the CCS IDE
must be able to run on its own.
xv

 Preface

xvi
Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

1

Introducing Links and
Embedded Objects

Requirements for MATLAB Link for
Code Composer Studio (p. 1-3)

Describes the software and hardware requirements for
running this product

Constructing Link Objects (p. 1-7) Shows you what a link object is and how to construct one

Properties and Property Values (p. 1-9) Describes how to work with objects, their properties and
property values

Overloaded Functions for Links
(p. 1-14)

Explains what makes a function overloaded and where to
get more information about the overloaded functions in
this product

Link Properties (p. 1-15) Describes the properties of link objects

Tutorial 1-1—Using Links and
Embedded Objects (p. 1-23)

Guides you through the process of creating and using
links and embedded objects

Tutorial 1-2—Using Links for RTDX
(p. 1-48)

Demonstrates one process for using RTDX to
communicate with CCS IDE and transferring data
between MATLAB and CCS IDE

1 Introducing Links and Embedded Objects

1-2
The MATLAB Link for Code Composer Studio Development Tools uses objects
to create:

• Links to Code Composer Studio Integrated Development Environment (CCS
IDE)

• Links to Real-Time Data Exchange (RTDX) Interface. This link is a subset of
the link to CCS IDE.

Concepts you need to know about the objects for linking in this toolbox are
covered in these sections:

• “Constructing Link Objects”

• “Properties and Property Values”

• “Setting and Retrieving Property Values”

• “Setting Property Values Directly at Construction”

• “Setting Property Values with set”

• “Retrieving Properties with get”

• “Direct Property Referencing to Set and Get Values”

• “Overloaded Functions for Links”

Refer to MATLAB Classes and Objects in your MATLAB documentation for
more details on object-oriented programming in MATLAB.

Many of the links use COM server features to create handles for working with
the links. Refer to your MATLAB documentation for more information about
COM as used by MATLAB.

Requirements for MATLAB Link for Code Composer Studio
Requirements for MATLAB Link for Code Composer Studio
This section describes the hardware and software you need to run the
MATLAB Link for Code Composer Studio Development Tools on your Microsoft
Windows PC.

MATLAB Link for Code Composer Studio runs on Microsoft Windows NT 4.0
Workstation and Server, Windows XP, and Windows 2000 platforms.

Platform Requirements—Hardware and Operating
System
To run the MATLAB Link for Code Composer Studio, your host PC must meet
the following hardware configuration:

• Intel Pentium or Intel Pentium processor compatible PC

• 64 MB RAM (128 MB recommended)

• 20 MB hard disk space available after installing MATLAB

• Color monitor

• One full-length peripheral component interface (PCI) slot available to use
the C6701 EVM internally in your PC

• Slots or connectors, such as USB or parallel ports, for connecting your
hardware

• CD-ROM drive

• Microsoft Windows NT 4.0 Server or Workstation, Windows XP, or
Windows 2000
1-3

1 Introducing Links and Embedded Objects

1-4
Refer to your documentation from The MathWorks for more information on
installing the software required to support MATLAB Link for Code Composer
Studio, list in this table.

For information about the software required to use the MATLAB Link for Code
Composer Studio Development Tools, refer to the Products area of the
MathWorks Web site—http://www.mathworks.com.

Texas Instruments Software
In addition to the required software from The MathWorks, MATLAB Link for
Code Composer Studio requires that you install the Texas Instruments
development tools and software listed in the following table. Installing Code
Composer Studio IDE for the C2000, C5000, C6000, or OMAP series installs
the software shown in the table.

Prerequisites for Using MATLAB Link for Code Composer Studio Software for
Targeting

Installed Product Additional Information

MATLAB 6.5.1 Core software from The MathWorks

Signal Processing
Toolbox 6.1 or later

Software package for analyzing signals,
processing signals, and developing algorithms

Required TI Software for MATLAB Link for Code Composer Studio

Installed Product Additional Information

Assembler Creates object code (.obj) for supported
boards from assembly code.

Compiler Compiles C code from the blocks in
Simulink models into object code (.obj). As
a by-product of the compile process, you get
assembly code (.asm) as well.

Linker Combines various input files, such as object
files and libraries.

Requirements for MATLAB Link for Code Composer Studio
In addition to the TI software, you need one or more of the following in any
combination:

• One or more boards that CCS supports in the Setup utility, either C2800™,
C5000™, or C6000™ digital signal processor platforms, such as the
C6416 DSK or C6713 DSK

• One or more OMAP boards

• One or more simulators from CCS

To use C5000 platforms from TI, install the Code Composer Studio IDE version
that supports C5000 products.

To use C2800 platforms from TI, install the Code Composer Studio IDE version
that supports C2800 platforms.

To use OMAP platforms from TI, install the Code Composer Studio IDE version
that supports OMAP platforms.

For up-to-date information about the software from The MathWorks you need
to use the MATLAB Link for Code Composer Studio, refer to the MathWorks

Code Composer Studio 2.2
or 2.21

Texas Instruments integrated development
environment (IDE) that provides code
debugging and development tools.

• For C2800—use CCS 2.2 for C2800

• For C5000—use CCS 2.2 for C5000

• For C6000—use CCS 2.2 for C6000

• For OMAP—use CCS 2.2 for OMAP

TI miscellaneous utilities Various tools for developing applications for
the supported digital signal processor
families.

Code Composer Setup
Utility

Program you use to configure your CCS
installation by selecting your target boards
or simulator.

Required TI Software for MATLAB Link for Code Composer Studio (Continued)

Installed Product Additional Information
1-5

1 Introducing Links and Embedded Objects

1-6
Web site—www.mathworks.com. Check the Product area for the MATLAB Link
for Code Composer Studio.

Constructing Link Objects
Constructing Link Objects
When you create a link to CCS IDE using the ccsdsp command, you are
creating a “link to CCS IDE and RTDX Interface” object (called a link object for
brevity from here on). The link object implementation relies on MATLAB
object-oriented programming capabilities similar to the objects you find in the
Filter Design and Control Systems Toolboxes.

The discussions in this section apply to the link objects in the MATLAB Link
for Code Composer Studio. For a discussion of the embedded objects that are
also part of this product, refer to “About Objects for MATLAB Link Software”
on page 2-1. Since both object types use the MATLAB programming
techniques, the information about working with the links, such as how you get
or set properties, or use methods, apply equally to the link objects and the
embedded objects. Only their constructors, properties, and methods are
different.

Like other MATLAB structures, objects (also called links; we use the terms
interchangeably here) in the MATLAB Link for Code Composer Studio
Development Tools have predefined fields called object properties.

If you are new to objects, you might find the glossary section, “Some
Object-Oriented Programming Terms” on page 2-5, helpful to explain the
terms used in this User’s Guide.

You specify object property values by either:

• Specifying the property values when you create the object

• Creating an object with default property values, and changing some or all of
these property values later

For examples of setting link properties, refer to “Setting Property Values with
set” on page 1-10.

Example— Constructor for Links
The easiest way to create a link object is to use the function ccsdsp to create a
link with the default properties. Create a link named cc to CCS IDE by typing

cc = ccsdsp

MATLAB responds with a list of the properties of the link cc you created along
with the associated default property values.
1-7

1 Introducing Links and Embedded Objects

1-8
CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

Inspecting the output reveals two objects listed—a CCS IDE object and an CCS
IDE and RTDX objects cannot be created separately. By design they maintain
a member class relationship; the RTDX object is a class, a member of the CCS
object class. In this example, cc is an instance of the class CCS. If you type

rx = cc.rtdx

rx is a handle to the RTDX portion of the CCS object. As an alias, rx replaces
cc.rtdx in functions such as readmat or writemsg that use the RTDX
communications features of the CCS link. Typing rx at the command line now
produces

rx

RTDX channels : 0

The link properties are described in “Tables of Link Software Functions” on
page 3-3, and in more detail in “Link Properties” on page 1-15. These
properties are set to default values when you construct links.

Properties and Property Values
Properties and Property Values
Links (or objects) in this MATLAB Link for Code Composer Studio have
properties associated with them. Each property is assigned a value. You can set
the values of most properties, either when you create the link or by changing
the property value later. However, some properties have read-only values. And
a few property values, such as the board number and the target processor to
which the link attaches, become read-only after you create the object. You
cannot change those after you create your link.

Setting and Retrieving Property Values
You can set MATLAB Link for Code Composer Studio for Texas Instruments
DSP link property values either:

• Directly when you create the link

• By using the set function with an existing link

Retrieve CCS IDE link property values with the get function.

In addition, direct property referencing lets you either set or retrieve property
values for links.

Setting Property Values Directly at Construction
To set property values directly when you construct a link, include the following
pair of entries in the input argument list for the link construction function
ccsdsp:

• A string for the property name to set followed by a comma. Enclose the string
in single quotation marks as you do any string in MATLAB.

• The associated property value. Sometimes this value is also a string.

Include as many property names in the argument list for the object
construction command as there are properties to set directly.
1-9

1 Introducing Links and Embedded Objects

1-1
Example—Setting Link Property Values at Construction
Suppose you want to set the following link characteristics when you create a
link to a DSP on a board in your computer:

• Link to the second DSP board installed on your computer.

• Connect to the first processor on the target board.

• Set the global timeout to 5 s. The default is 10 s.

Do this by typing

cc = ccsdsp('boardname',1,'procnum',0,'timeout',5);

boardname, procnum, and timeout properties are described in “Link Properties”
on page 1-15, as are the other properties for links.

Note When you set link property values, the strings for property names and
their values are not sensitive to the case of the string. In addition, you only
need to type the shortest uniquely identifying string in each case. For
example, you could have typed the above code as

cc = ccsdsp('board',1,'proc',0,'tim',5);

Setting Property Values with set
Once you construct a link, the set function lets you modify its property values.

You can use the set function to both:

• Set specific property values

• Display a list of the link properties showing all allowed values for each
property and the default setting for each property

Example—Setting Link Property Values Using set
For example, set the timeout specification for the link cc from the previous
section.

To do this, type

set(cc,'time',8);
0

Properties and Property Values
Now use get to check that the desired changes have been made to cc.

get(cc)

ans =

rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: []
 boardnum: 0
 procnum: 0
 timeout: 8
 page: 0

Notice that the display reflects the changes in the property values.

To display a listing of all of the properties associated with a link cc that you
can set, type

get(cc)

ans =

rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: []
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

Retrieving Properties with get
You can use the get command to:

• Retrieve property values for an object

• Display a listing of the properties associated with an object and their
associated property values
1-11

1 Introducing Links and Embedded Objects

1-1
Example—Retrieving Link Property Values Using get
For example, to retrieve the value of the apiversion property for cc, and
assign it to a variable, type

v = get(cc,'apiversion')

ans =

 1 0

Note When you retrieve properties, the strings for property names and their
values are not case-sensitive. In addition, you only need to type the shortest
uniquely identifying string in each case. For example, you could have typed
the above code as

v = get(cc,'api');

To list the properties of a link cc, and their values, type

get(cc)

ansrtdx: [1x1 rtdx]

rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: []
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

Direct Property Referencing to Set and Get Values
You can reference directly into a property for setting or retrieving property
values using MATLAB structure-like referencing. Do this by using a period to
index into an object property by name.
2

Properties and Property Values
Example—Direct Property Referencing in Links

1 Create a link with default values.

2 Change its timeout and number of open channels.

cc = ccsdsp;
cc.time = 6;
cc.rtdx.numchannels = 4;

Notice that you do not have to type the full name of the timeout property name,
and you can use lower case to refer to the property name.

To retrieve property values, you can use direct property referencing.

num = cc.rtdx.numchannels

num =
 4
1-13

1 Introducing Links and Embedded Objects

1-1
Overloaded Functions for Links
Several functions in this MATLAB Link for Code Composer Studio have the
same name as functions in other MathWorks toolboxes or in MATLAB. These
behave similarly to their original counterparts, but you apply these functions
directly to an object. This concept of having functions with the same name
operate on different types of objects (or on data) is called overloading of
functions.

For example, the set command is overloaded for links (link objects). Once you
specify your link by assigning values to its properties, you can apply the
functions in this toolbox (such as readmat for using RTDX to read an array of
data from the target processor) directly to the variable name you assign to your
link, without having to specify your link parameters again.

For a complete list of the functions that act on links, refer to the tables of
functions in the function reference pages.
4

Link Properties
Link Properties
The MATLAB Link for Code Composer Studio provides links to your target
hardware so you can communicate with processors for which you are
developing systems and algorithms. Each link comprises two objects—a CCS
IDE object and an RTDX Interface object. The link objects are not separable;
the RTDX object is a subclass of the CCS IDE object. Each of the link objects
has multiple properties. To configure the links for CCS IDE and RTDX, you set
parameters that define details such as the desired target board, the target
processor, the timeout period applied for communications operations, and a
number of other values. Since the MATLAB Link for Code Composer Studio
uses objects to create the links, the parameters you set are called properties
and you treat them as properties when you set them, retrieve them, or modify
them.

This section details the properties for the links for CCS IDE and RTDX. First
the section provides tables of the properties, for quick reference. Following the
tables, the section offers in-depth descriptions of each property, its name and
use, and whether you can set and get the property value associated with the
property. Descriptions include a few examples of the property in use.

MATLAB users may find much of this handling of objects familiar. Objects, or
links as we call them in the MATLAB Link for Code Composer Studio, behave
like objects in MATLAB and the other object-oriented toolboxes. For C++
programmers, this discussion of object-oriented programming is likely to be a
review.

Quick Reference to Link Properties
The following table lists the properties for the links in the MATLAB Link for
Code Composer Studio. The second column tells you which object the property
1-15

1 Introducing Links and Embedded Objects

1-1
belongs to. Knowing which property belongs to each object in a link tells you
how to access the property.

Table 1-1: Properties for the Links in MATLAB Link for Code Composer Studio

Property
Name

Applies to
Which Link?

User
Settable?

Description

apiversion CCS IDE No Reports the version
number of your CCS API.

boardnum CCS IDE Yes/initially Specifies the index
number of a board that
CCS IDE recognizes.

ccsappexe CCS IDE No Specifies the path to the
CCS IDE executable.
Read-only property.

numchannels RTDX No Contains the number of
open RTDX channels for a
specific link.

page CCS IDE Yes/default Stores the default memory
page for reads and writes.

procnum CCS IDE Yes/at start
only

Stores the number CCS
Setup Utility assigns to
the processor.

rtdx RTDX No Specifies RTDX in a
syntax.

rtdxchannel RTDX No A string. Identifies the
RTDX channel for a link.

timeout CCS IDE Yes/default Contains the global
timeout setting for the
link.

version RTDX No Reports the version of
your RTDX software.
6

Link Properties
Some properties are read only—you cannot set the property value. Other
properties you can change at all times. If the entry in the User Settable column
is “Yes/initially”, you can set the property value only when you create the link.
Thereafter it is read only.

Details About the Link Properties
To use the links for CCS IDE and RTDX Interface you set values for:

• boardnum—The board with which the link communicates

• procnum—The processor on the board, if the board has multiple processors

• timeout—Global timeout value. (Optional. Default is 10 s.)

Details of the properties associated with links to CCS IDE and RTDX Interface
appear in the following sections, listed in alphabetical order by property name.

Many of these properties are object linking and embedding (OLE) handles. The
MATLAB COM server creates the handles when you create links for CCS IDE
and RTDX. You can manipulate the OLE handles using get, set, and invoke
to work directly with the COM interface with which the handles interact.

apiversion
Property appversion contains a string that reports the version of the
application program interface (API) for CCS IDE that you are using when you
create a link. You cannot change this string. When you upgrade the API, or
CCS IDE, the string changes to match. Use display to see the apiversion
property value for a link. This example shows the appversion value for link cc.

display(cc)

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0
1-17

1 Introducing Links and Embedded Objects

1-1
Note that the API version is not the same as the CCS IDE version.

boardnum
Property boardnum identifies the target board referenced by a link for CCS IDE.
When you create a link, you use boardnum to specify the board you are
targeting. To get the value for boardnum, use ccsboardinfo or the CCS Setup
utility from Texas Instruments. The CCS Setup utility assigns the number for
each board installed on your system.

ccsappexe
Property ccsappexe contains the path to the CCS IDE executable file
cc_app.exe. When you use ccsdsp to create a link, MATLAB determines the
path to the CCS IDE executable and stores the path in this property. This is a
read-only property. You cannot set it.

numchannels
Property numchannels reports the number of open RTDX communications
channels for an RTDX link. Each time you open a channel for a link,
numchannels increments by one. For new links numchannels is zero until you
open a channel for the link.

To see the value for numchannels create a link to CCS IDE. Then open a
channel to RTDX. Use get or display to see the RTDX link properties.

cc=ccsdsp

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

rx=cc.rtdx

 RTDX channels : 0
8

Link Properties
open(rx,'ichan','r','ochan','w');

get(cc.rtdx)

ans =

 numChannels: 2
 Rtdx: [1x1 COM]
 RtdxChannel: {'' '' ''}
 procType: 103
 timeout: 10

page
Property page contains the default value CCS IDE uses when the user does not
specify the page input argument in the syntax for a function that access
memory.

procnum
Property procnum identifies the processor referenced by a link for CCS IDE.
When you create a link, you use procnum to specify the processor you are
targeting. The CCS Setup Utility assigns a number to each processor installed
on each board. To determine the value of procnum for a processor, use
ccsboardinfo or the CCS Setup utility from Texas Instruments.

To identify a processor, you need both the boardnum and procnum values. For
boards with one processor, procnum equals zero. CCS IDE numbers the
processors on multiprocessor boards sequentially from 0 to the number of
processors. For example, on a board with four processors, the processors are
numbered 0, 1, 2, and 3.

rtdx
Property rtdx is a subclass of the ccsdsp link and represents the RTDX portion
of a link for CCS IDE. As shown in the example, rtdx has properties of its own
that you can set, such as timeout, and that report various states of the link.

get(cc.rtdx)

ans =
1-19

1 Introducing Links and Embedded Objects

1-2
 version: 1
 numChannels: 0
 Rtdx: [1x1 COM]
 RtdxChannel: {'' [] ''}
 procType: 103
 timeout: 10

In addition, you can create an alias to the rtdx portion of a link, as shown in
this code example.

rx=cc.rtdx

 RTDX channels : 0

Now you can use rx with the functions in the MATLAB Link for Code Composer
Studio, such as get or set. If you have two open channels, the display looks like
the following

get(rx)

ans =

 numChannels: 2
 Rtdx: [1x1 COM]
 RtdxChannel: {2x3 cell}
 procType: 98
 timeout: 10

when the processor is from the C62 family.

rtdxchannel
Property rtdxchannel, along with numchannels and proctype, is a read-only
property for the RTDX portion of a link for CCS IDE. To see the value of this
property, use get with the link. Neither set nor invoke work with
rtdxchannel.
0

Link Properties
rtdxchannel is a cell array that contains the channel name, handle, and mode
for each open channel for the link. For each open channel, rtdxchannel
contains three fields, as follows:

With four open channels, rtdxchannel contains four channel elements and
three fields for each channel element.

timeout
Property timeout specifies how long CCS IDE waits for any process to finish.
Two timeout periods can exist—one global, one local. You set the global
timeout when you create a link for CCS IDE. The default global timeout value
10 s. However, when you use functions to read or write data to CCS IDE or your
target, you can set a local timeout that overrides the global value. If you do not
set a specific timeout value in a read or write process syntax, the global
timeout value applies to the operation. Refer to the help for the read and write
functions for the syntax to set the local timeout value for an operation.

version
Property version reports the version number of your RTDX software. When
you create a link, version contains a string that reports the version of the
RTDX application that you are using. You cannot change this string. When you
upgrade the API, or CCS IDE, the string changes to match. Use display to see
the version property value for a link. This example shows the appversion
value for link rx.

get(rx) % rx is an alias for cc.rtdx.

ans =

 version: 1
 numChannels: 0

.rtdxchannel{i,1} Channel name of the ith-channel, i from 1 to the
number of open channels

.rtdxchannel{i,2} Handle for the ith-channel

.rtdxchannel{i,3} Mode of the ith-channel, either 'r' for read or 'w'
for write
1-21

1 Introducing Links and Embedded Objects

1-2
 Rtdx: [1x1 COM]
 RtdxChannel: {'' [] ''}
 procType: 103
 timeout: 10
2

Tutorial 1-1—Using Links and Embedded Objects
Tutorial 1-1—Using Links and Embedded Objects
The Link for Code Composer Studio® IDE (CCS IDE), a part of the MATLAB
Link for Code Composer Studio, provides a connection between MATLAB and
a digital signal processor in Code Composer Studio. Using links provides a
mechanism for you to control and manipulate a signal processing application
using the computational power of MATLAB. This can help you while you debug
and develop your application. Another possible use is for creating MATLAB
scripts that you use to verify and test algorithms that run in their final
implementation on your production processor target.

Before using the functions available with the link for CCS IDE, you must select
a digital signal processor to be your target because any link you create is
specific to a designated digital signal processor. Selecting a processor is only
necessary for multiprocessor boards or multiple board configurations of Code
Composer Studio. When you have only one board with a single processor, the
link defaults to the existing processor. For the links, the simulator counts a
board; if you have both a board and a simulator that CCS recognizes, you must
specify the target explicitly.

Introducing the Tutorial
To get you started using links for CCS IDE software, the MATLAB Link for
Code Composer Studio includes an example script ccstutorial.m. As you
follow along with this tutorial, you perform five tasks that step you through
creating and using links for CCS IDE:

1 Select your target.

2 Create and query links to CCS IDE.

3 Use MATLAB to load files into CCS IDE.

4 Work with your CCS IDE project from MATLAB.

5 Close the links you opened to CCS IDE.

For this tutorial, you load and run a simple digital signal processing
application on target processor you select. To help you understand how they
work, the tutorial demonstrates both writing to memory and reading from
1-23

1 Introducing Links and Embedded Objects

1-2
memory in the “Working with Links and Data” on page 1-32 portion of the
tutorial.

Using the read and write functions gets a bit complicated. MATLAB supports
only double-precision values for calculations, but you can read and write a
range of data types to and from your target. Seeing how the read and write
functions work can help you when you need to do your work.

The tutorial covers the link functions listed below. The functions listed first
apply to CCS IDE independent of the links—you do not need a link to use these
functions. The functions listed next require a CCS IDE link in place before you
can use the function syntax:

• Global functions for CCS IDE

- ccsboardinfo—return information about the boards that CCS IDE
recognizes as installed on your PC.

- boardprocsel—select the board to target. Although you can use this
generally, the MATLAB Link for Code Composer Studio provides it as an
example of a user interface you can build and as a tool in the tutorial. We
do not recommend that you use this to select your target. Use
ccsboardinfo and ccsdsp to specify the target for your processing
application

- ccsdsp—construct a link to CCS IDE. When you construct the link you
specify the target board and processor.

- clear—remove a specific link to CCS IDE or remove all existing links.

• CCS IDE link functions

- address—return the address and page for an entry in the symbol table in
CCS IDE

- disp—display the properties of a link to CCS IDE and RTDX

- halt—terminate execution of a process running on the processor

- info—return information about the target processor or information about
open RTDX channels

- isrunning—test whether the target processor is executing a process

- isrtdxcapable—test whether your target supports RTDX
communications

- read—retrieve data from memory on the target processor
4

Tutorial 1-1—Using Links and Embedded Objects
- restart—restore the program counter (PC) to the entry point for the
current program

- run—execute the program loaded on the target processor

- visible—set whether CCS IDE window is visible on the desktop while
CCS IDE is running

- write—write data to memory on the target processor

• MATLAB Link for Code Composer Studio functions for working with
embedded objects

- cast—create a new object with a different datatype (the represent
property) from an object in MATLAB Link for Code Composer Studio.
Demonstrated with a numeric object.

- convert—change the represent property for an object from one datatype
to another. Demonstrated with a numeric object.

- createobj—return an object in MATLAB that accesses embedded data.
Demonstrated with structure, string, and numeric objects.

- getmember—return an object that accesses a single field from a structure.
Demonstrated with a structure object.

- goto—position the program counter to the specified location in the project
code.

- list—return various information listings from Code Composer Studio.

- read—read the information at the location accessed by an object into
MATLAB as numeric values. Demonstrated with a numeric, string,
structure, and enumerated objects.

- readnumeric—return the numeric equivalent of data at the location.
accessed by an object. Demonstrated with an enumerated object.

- write—write to the location referenced by an object. Demonstrated with
numeric, string, structure, and enumerated objects.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB, click run ccstutorial. Running the
interactive tutorial in MATLAB puts you in an interactive mode where the
tutorial program provides prompts and text descriptions to which you respond
1-25

1 Introducing Links and Embedded Objects

1-2
to move to the next portion of the lesson. The interactive tutorial covers the
same information provided by the following tutorial sections. You can view the
tutorial M-file used here by clicking ccstutorial.m.

Selecting Your Target
Links for CCS IDE provides two tools for selecting a DSP board and processor
in multiprocessor configurations. One is a command line tool called
ccsboardinfo which prints a list of the available boards and processors. So
that you can use this function in a script, ccsboardinfo can return a MATLAB
structure that you use when you want your script to select a target board
without your help.

Note The board and processor you select in the tutorial remains the target
throughout the tutorial.

1 To see a list of the boards and processors installed on your PC, type

ccsboardinfo

MATLAB returns a list that shows you all the boards and processors that
CCS IDE recognizes as installed on your system.

2 To use the Selection Utility, boardprocsel, to select a target board, type

[boardnum,procnum] = boardprocsel

When you use boardprocsel, you see a dialog similar to the following. Note
that some entries vary depending on your board set.
6

Tutorial 1-1—Using Links and Embedded Objects
3 Select a board name and processor name from the lists.

You are selecting a board and processor number that identifies your
particular target. When you create the link for CCS IDE in the next section
of this tutorial, the selected board and processor become the target of the
link.

4 Click Done to accept your board and processor selection and close the dialog.

boardnum and procnum now represent the Board name and Processor
name you selected—boardnum = 1 and procnum = 0

Creating and Querying Links for CCS IDE
In this tutorial section you create the connection between MATLAB and Code
Composer Studio IDE. This connection, or link, is represented by a MATLAB
object, which for this session you save as variable cc. You use function ccsdsp
to create link objects. When you create links, ccsdsp input arguments let you
define other link properties, such as the global timeout. Refer to the ccsdsp
documentation for more information on these input arguments.

Use the generated link cc to direct actions to your target processor. In the
following tasks, cc appears in all function syntax that interact with CCS IDE
and the target:
1-27

1 Introducing Links and Embedded Objects

1-2
1 Create a link to your selected board and processor by typing

cc=ccsdsp('boardnum',boardnum,'procnum',procnum)

If you were to watch closely, and your machine is not too fast, you see Code
Composer Studio appear briefly when you call ccsdsp. If CCS IDE was not
running before you established the new link, CCS starts and gets placed in
the background.

Note When CCS IDE is running in the background it does not appear on
your desktop, in your task bar, or on the Applications page in the Task
Manager. It does show up as a process, cc_app.exe, on the Processes tab in
Task Manager.

2 Type visible(cc,1) to force CCS IDE to be visible on your desktop

In most cases, you need to interact with Code Composer Studio while you
develop your application, so the first link function we introduce, visible,
controls the state of Code Composer Studio on your desktop. visible accepts
Boolean inputs that make Code Composer Studio either visible on your
desktop (input to visible ≥ 1) or invisible on your desktop
(input to visible = 0). For the rest of this tutorial you need to interact with
CCS IDE so we use visible to set the CCS IDE visibility to 1.

3 Now type disp(cc) at the prompt to see the status information.

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

The MATLAB Link for Code Composer Studio provides three functions to
read the status of a target board and processor:
8

Tutorial 1-1—Using Links and Embedded Objects
- info—return a structure of testable target conditions

- disp—print information about the target CPU

- isrunning—return the state (running or halted) of the CPU

- isrtdxcapable—return whether the target handle RTDX

4 Type linkinfo = info(cc).

The cc link status information tells you about the target

linkinfo =

 procname: 'CPU'
 isbigendian: 0
 family: 320
 subfamily: 103
 revfamily: 1
 timeout: 10

5 Check to see if the target is running by entering

runstatus = isrunning(cc)

MATLAB responds by telling you that the processor is stopped

runstatus =

 0

6 At last, check to see whether the target supports RTDX communications by
entering

usesrtdx = isrtdxcapable(cc)
usesrtdx =

 1

Loading Files into CCS
You have established the link to CCS IDE and to target. Using three functions
you learned about the target, whether it was running, its type, and whether
CCS IDE was visible. Now the target needs something to do.
1-29

1 Introducing Links and Embedded Objects

1-3
In this tutorial section you load the executable code for the target CPU in CCS
IDE. For this tutorial, the MATLAB Link for Code Composer Studio includes a
Code Composer Studio project file. With the following commands in the tutorial
you locate the tutorial project file and load it into CCS IDE. The open function
directs Code Composer Studio to load a project file or workspace file

Note Code Composer Studio has its own workspace and workspace files
which are quite different from MATLAB workspace files and the MATLAB
workspace. Remember to pay attention to both workspaces.

After you have executable code running on your target you can exchange data
blocks with the target. This is the purpose of the links for CCS IDE:

1 To load the appropriate project file to your target, do one of the following
depending on the class of your target processor.

C54xx processor family—Type the following commands to load the project
file. Notice that these functions also change your CCS IDE working
directory.

projfile =
fullfile(matlabroot,'toolbox','ccslink','ccsdemos',...
'ccstutorial','ccstut_54xx.pjt')
projpath = fileparts(projfile)
open(cc,projfile) % Open project file
cd(cc,projpath) % Change working directory of Code Composer(only)

C6x11 processor family—Type the following commands to load the project
file. Notice that these functions also change your CCS IDE working
directory.

projfile =
fullfile(matlabroot,'toolbox','ccslink','ccsdemos',...
'ccstutorial','ccstut_6x11.pjt')
projpath = fileparts(projfile)
open(cc,projfile) % Open project file
0

Tutorial 1-1—Using Links and Embedded Objects
cd(cc,projpath) % Change Code Composer working directory

C6x0x processor family—Type the following commands to load the project
file. Notice that these functions also change your CCS IDE working
directory.

projfile =
fullfile(matlabroot,'toolbox','ccslink','ccsdemos',...
'ccstutorial','ccstut_6x0x.pjt')
projpath = fileparts(projfile)
open(cc,projfile) % Open project file
cd(cc,projpath) % Change Code Composer working directory

2 Next, build the target executable file in CCS IDE. Select Project->Build
from the menu bar in CCS IDE.

You may get an error here related to one or more missing .lib files. If you
installed CCS IDE in a directory other than the default installation
directory, browse in your installation directory to find the missing file or
files. Use the path in the error message as an indicator of where to find the
missing files.

3 Type load(cc,'a.out') to load the target execution file.

4 You now have a loaded program file and associated symbol table. To
determine the memory address of the global symbol ddat, type

ddata = address(cc,'ddat')

ddata =

 1.0e+009 *

 2.1475 0

Your values for ddata may be different depending on your target.

Note The symbol table is available after you load the program file into the
target, not after you build a program file.
1-31

1 Introducing Links and Embedded Objects

1-3
5 To convert ddata to a hexadecimal string that contains the memory address
and memory page, type

dec2hex(ddata)

MATLAB displays

ans =

80000010
00000000

where the memory page is 0x00000000 and the address is 0x80000010.

Working with Links and Data
With the target code loaded, you can use the MATLAB Link for Code Composer
Studio functions to examine and modify data values in the processor.

When you look at the source file listing in the CCS IDE Project view window,
there should be a file named ccstut.c. The MATLAB Link for Code Composer
Studio ships this file with the tutorial and includes it in the project. ccstut.c
has two global data arrays—ddat and idat. They are declared and initialized
in lines 10 and 11 of the source code. You access these processor memory arrays
from MATLAB using the functions read and write.

The MATLAB Link for Code Composer Studio provides three functions to
control target execution—run, halt, and restart. To demonstrate these
commands, use CCS IDE to add a breakpoint to line 64 of cctut.c. Line 64 is

printf("Link for Code Composer: Tutorial - Memory Modified by Matlab!\n");

For information about adding breakpoints to a file, refer to your Code
Composer Studio User’s Guide from Texas Instruments. Then proceed with the
tutorial:

1 To demonstrate the new functions, try the following functions.

halt(cc) % Halt the processor
restart(cc) % Reset the PC to start of program
2

Tutorial 1-1—Using Links and Embedded Objects
run(cc,'runtohalt',30); % Wait for program execution to stop at
% breakpoint! (timeout = 30 seconds)

When you switch to viewing CCS IDE, you see that your program stopped at
the breakpoint you inserted on line 64, and the program printed

Link for Code Composer: Tutorial - Initialized Memory
Double Data array = 16.3 -2.13 5.1 11.8
Integer Data array = 1-508-647-7000

in the CCS IDE Stdout tab. Nothing prints in MATLAB.

2 Before you restart your program (currently stopped at line 64) you can
change some of the values in memory. Perform one of the procedures listed
below based on your target processor.

C5xxx processor family—Type the following functions to demonstrate the
read and write functions.

a Type ddatv = read(cc,address(cc,'ddat'),'double',4).

MATLAB responds with

ddatv =

 16.3000 -2.1300 5.1000 11.8000

b Type idatv = read(cc,address(cc,'idat'),'int16',4).

Now MATLAB returns

idatv =

 1 0 508 0

Because you requested 16-bit integers, whose maximum value is 512, the
values 647 and 7000 come back as zeros since they cannot be represented
as 16-bit integers. Using int32 would have returned the full values for all
the data in idatv.

c You can change the values stored in ddat by typing
write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB to write the values to the target
as double-precision data.
1-33

1 Introducing Links and Embedded Objects

1-3
d To change idat, type

write(cc,address(cc,'idat'),int32([1:4]))

Here you write the data to the target as 32-bit integers (convenient for
representing phone numbers, for example).

e Start the program running again by typing

run(cc,'runtohalt',30);

Checking the Stdout tab in CCS IDE reveals that ddat and idat contain
new values. Now we read those new values back into MATLAB.

f Type ddatv = read(cc,address(cc,'ddat'),'double',4).

ddatv =

 3.1416 12.3000 0.3679 0.7071

ddatv does contain the values you wrote in step c.

g Check that the change to idatv occurred by typing

idatv = read(cc,address(cc,'idat'),'int16',4)

MATLAB returns the new values for idatv.

idatv =

 1 2 3 4

h Finally, use restart to reset the program counter for your program to the
beginning. Type

restart(cc);

C6xxx processor family—Type the following commands to demonstrate the
read and write functions.

a Type ddatv = read(cc,address(cc,'ddat'),'double',4).

MATLAB responds with

ddatv =

 16.3000 -2.1300 5.1000 11.8000
4

Tutorial 1-1—Using Links and Embedded Objects
b Type idatv = read(cc,address(cc,'idat'),'int16',4).

Now MATLAB responds

idatv =

 1 0 508 0

Because you requested 16-bit integers, whose maximum value is 512, the
values 647 and 7000 come back as zeros since they cannot be represented
as 16-bit integers. Using int32 would have returned the full values for all
the data in idatv.

c You can change the values stored in ddat by typing
write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB to write the values to the target
as double-precision data.

d To change idat, type

write(cc,address(cc,'idat'),int32([1:4]))

Here you write the data to the target as 32-bit integers (convenient for
representing phone numbers, for example).

e Now start the program running again by typing

run(cc,'runtohalt',30);

Checking the Stdout tab in CCS IDE reveals that ddat and idat contain
new values. Now read those new values back into MATLAB.

f Type ddatv = read(cc,address(cc,'ddat'),'double',4).

ddatv =

 3.1416 12.3000 0.3679 0.7071

ddatv does contain the values you wrote in step c.
1-35

1 Introducing Links and Embedded Objects

1-3
g Check that the change to idatv occurred by typing

idatv = read(cc,address(cc,'idat'),'int32',4)

MATLAB returns the new values for idatv.

idatv =

 1 2 3 4

h Finally, use restart to reset the program counter for your program to the
beginning. Type

restart(cc);

3 The MATLAB Link for Code Composer Studio offers two more functions for
reading and writing data to your target. These functions let you read and
write data to the processor registers: regread and regwrite. They let you
change variable values on the processor in real time. As before, the functions
behave slightly differently depending on your target. Select the appropriate
procedure for your target to demonstrate regread and regwrite.

C5xxx processor family—Most registers are memory-mapped and
consequently are available using read and write. However, the PC register
is not memory mapped. To access this register, you use the special pair of
functions—regread and regwrite. The following commands demonstrate
how to use these functions to read and write to the PC register.

a To read the value stored in register PC, type

cc.regread('PC','binary')

To tell MATLAB what datatype you are reading, the string binary
indicates that the PC register contains a value stored as an unsigned
binary integer.

In response, MATLAB displays

ans =

 33824
6

Tutorial 1-1—Using Links and Embedded Objects
b To write a new value to the PC register, type

cc.regwrite('PC',hex2dec('100'),'binary')

This time, binary as an input argument tells MATLAB to write the value
to the target as an unsigned binary integer. Notice that you used hex2dec
to convert the hexadecimal string to decimal.

c Check the PC contains the value you wrote.

cc.regread('PC','binary)

C6xxx processor family—regread and regwrite let you access the
processor registers directly. Type the following functions to get data into and
out of the A0 and B2 registers on your target.

a Retrieve the value in register A0 and store it in a variable in your
MATLAB workspace. Type

treg = cc.regread('A0','2scomp');

treg now contains the two’s complement representation of the value in
A0.

b Retrieve the value in register B2 as an unsigned binary integer, by typing

cc.regread('B2','binary');

c Now, use regwrite to put the value in treg into register A2.

cc.regwrite('A2',treg,'2scomp');

CCS IDE reports that A0, B2, and A2 have the values you expect. Select
View–>CPU Registers–>Core Registers from the CCS IDE menu bar to
see a listing of the processor registers.

Working with Embedded Objects
Having direct access to the memory on your target DSP, as provided by the
links in MATLAB Link for Code Composer Studio, can be a powerful tool for
helping you develop and troubleshoot your digital signal processing
applications. But for programming in C, it is perhaps more valuable to be able
to work with memory and data in ways that are consistent with the C variables
embedded in your programs.

MATLAB Link for Code Composer Studio implements just this sort of access
and manipulation capability by using MATLAB objects (called embedded
objects in this guide) that access and represent variables and data embedded
1-37

1 Introducing Links and Embedded Objects

1-3
in your project. Various functions that compose the MATLAB Link for Code
Composer Studio, such as createobj, convert, and write, help you create the
embedded objects you use to work with your data in DSP memory and
registers, and let you manipulate the data in MATLAB and in your code.

This portion of the tutorial introduces some of the functions and how to use
them to access and manipulate them.

Function list generates a lot of information for you about an embedded
variable in the symbol table. An even more useful function is createobj that
creates a MATLAB object that represents a C variable in the symbol table in
CCS. Working with the object that createobj returns, you can read the entire
contents of a variable, or one or more elements of the variable when the
variable is an array or structure.

From the beginning of this tutorial you have used the link object cc with all of
the functions. cc represents the path to communicate with a particular
processor in CCS. For the remainder of this tutorial you work with a variety of
functions that use, not the link object cc, but other objects such as numeric or
structure objects, that represent embedded objects in CCS. All of these new
functions use the object names (handles) as the first input argument to the
function (in just the way you used cc). When you create the object cvar in step
4 that follows, cvar represents the embedded variable idat.

To begin, restart the program and use list to get some information about
a variable (an embedded object) in Code Composer Studio.

Using list

1 To restart the program in CCS, enter

restart(cc)

This resets the program counter to the beginning of your program.

2 To move the program counter (PC) to the beginning of main, which you
should do before rerunning your program, enter

goto(cc,'main')
run(cc,'main')

Moving the PC to main ensures that the program initializes the embedded
C variables.
8

Tutorial 1-1—Using Links and Embedded Objects
3 Now, to get information about a variable in your program, use list with two
input options—'variable' which defines the type of information to return,
and 'idat' which identifies the symbol itself.

idatlist = list(cc,'variable','idat')

idat is a global variable; the input keyword variable identifies it as one.
Other keywords for list include project, globalvar, function, and type.
Refer to list for more information about these options.

In your MATLAB workspace and window, you see a new structure named
idatlist. If you use the MATLAB Workspace browser, double-click
idatlist in the browser to see idatlist.

4 Rather than using list to get information about idat, create an object that
represents idat in your MATLAB workspace by entering

cvar = createobj(cc,'idat')

which creates the new numeric object cvar.

NUMERIC Object
 Symbol Name : idat
 Address : [40060 0]
 Wordsize : 16 bits
 Address Units per value : 2 AU
 Representation : signed
 Binary point position : 0
 Size : [4]
 Total address units : 8 AU
 Array ordering : row-major
 Endianness : little

You use cvar, through the numeric object properties and functions, to access
and manipulate the embedded variable idat, both in your MATLAB
workspace and in CCS if you write your changes back to CCS from your
workspace.

Using read and write

5 Try the following functions to read and write cvar. Notice the way the return
values change as you change the function syntax. Notice also that write
1-39

1 Introducing Links and Embedded Objects

1-4
actually changes the data in memory on the target, as you see from what
comes back to MATLAB after the third read.

a read(cvar)

This form returns all of the entries in the embedded array cvar to your
MATLAB workspace.

ans =

 1 508 647 7000

b read(cvar,2)

In contrast to the previous syntax, this one returns only the second
element of cvar—508.

c write(cvar,4,7001)

Using write to change the value stored in the fourth element of cvar to
7001.

d write(cvar,1,'FFFF')

Change the first element of cvar to -1, which is the decimal equivalent of
0xFFFF. When you entered FFFF as a string (enclosed in single quotation
marks), write converts the string to its decimal equivalent and stores
that at the target location in memory.

e read(cvar)

At last, read the embedded array cvar to see if your changes to the first
and fourth elements really occurred (they did).

f read(cvar,[1 size(cvar)]

Finally, read the first and last elements of the embedded variable cvar.

Using cast, convert, and size

Each time you used read, the function took the raw values of idat stored in
memory on your target and converted them to equivalent MATLAB numeric
values. The way that read converts idat elements to numeric values is
controlled by the properties of the object cvar which resulted from using
createobj to create it. When you created cvar, the object that accesses the
embedded variable idat, createobj assigned default property values to the
0

Tutorial 1-1—Using Links and Embedded Objects
properties of cvar that were appropriate for your target DSP architecture
and for the C representation of variable idat.

In many cases, it may help you develop your program if you change the
default conversion properties. Several of the object properties, such as
endianness, arrayorder, and size respond to changes made using function
set. To make more complex changes, use functions like cast and convert
that adjust multiple object property values simultaneously.

In step 6 of this tutorial, you have the opportunity to use cast, convert, and
size to modify cvar by changing property values. Unlike read and write,
cast, convert, and size (and set mentioned earlier) do not affect the
information stored on the target; they only change the properties of the
object in MATLAB. Unless you write your changes back to your target, the
changes you make in MATLAB stay in MATLAB.

6 To introduce changing the properties of cvar using cast, convert, and size,
enter the following commands at the prompt. In this series of examples, you
use read to view the changes each command makes to cvar.

a set(cvar,'size',[2])

As a result of this function, idat gets resized to only the first two
elements in the array.

b read(cvar)

ans =

 1 508

Returns only two values, not the full data set you saw in step 5a.

c uintcvar = cast(cvar,'unsigned short')

uintcvar is a new object, a copy of cvar (and thus idat), but with the
datatype property value of unsigned short instead of double. Notice
that the actual values are not different—just the interpretation. Where
cvar interprets the values in idat as doubles, uintcvar interprets the
values in idat as unsigned integers with 16 bits each. Now when you use
the object to read idat, the returned values from idat are interpreted
differently.

d read(uintcvar)
1-41

1 Introducing Links and Embedded Objects

1-4
e convert(cvar,'unsigned short')

In contrast to cast, convert does not make a copy of cvar; it changes the
datatype property of cvar to be unsigned short.

NUMERIC Object

 Symbol Name : idat

 Address : [40060 0]

 Wordsize : 16 bits

 Address Units per value : 2 AU

 Representation : unsigned

 Binary point position : 0

 Size : [2]

 Total address units : 4 AU

 Array ordering : row-major

 Endianness : little

f read(cvar)

ans =

 1 508

Remember that one of the first things you did in these examples was
change the size of cvar to 2. You should see that reflected in the returned
values. The values returned by cvar after you change the datatype
property should match the values returned by uintcvar since the objects
have the same properties.

One more thing to notice—the first value of idat is no longer -1, although
you changed the value in step 5d. Recall that you changed the datatype
to unsigned short for cvar, so the first element of idat that you set to
-1 is now shown as the unsigned equivalent 1.

Using getmember

To this point you have worked with fairly simple data in memory on your
target. However, with functions in MATLAB Link for Code Composer
2

Tutorial 1-1—Using Links and Embedded Objects
Studio, you can manipulate more complex data like strings, structures,
bitfields, enumerated data types, and pointers in a very similar way.

In the next, somewhat extended examples, the tutorial demonstrates some
common functions for manipulating structures, strings, and enumerated
data types on your target. Pay particular attention to function getmember
which extracts a single specified field from a structure on your target as an
object in MATLAB.

7 cvar = createobj(cc,'myStruct')

Here you create a new object cvar, replacing the old cvar, that represents
an embedded structure named myStruct on your target. When you loaded
this tutorial program, one of the defined structures in the program was
myStruct.

STRUCTURE Object
 Symbol Name : myStruct
 Address : [40032 0]
 Size : [1]
 Total Address Units : 28 AU
 Members : 'iy', 'iz'

8 read(cvar)

ans =

 iy: [2x3 double]
 iz: 'MatlabLink'

Now you see the contents of myStruct, its fields and values.

Here’s the definition of myStruct from ccstut.c in CCS.

struct TAG_myStruct {
int iy[2][3];
myEnum iz;

} myStruct = { {{1,2,3},{4,-5,6}}, MatlabLink}

9 write(cvar,'iz','Simulink')

After this command, you have updated the field iz in myStruct with the
actual enumerated name Simulink. If you look into ccstut.c, you see that
1-43

1 Introducing Links and Embedded Objects

1-4
iz is an enumerated datatype. That feature comes into play in the next
steps.

10 cfield = getmember(cvar,'iz')

cfield, the object returned by getmember, represents the embedded variable
iz in the project. Here’s what cfield looks like in property form.

ENUM Object
 Symbol Name : iz
 Address : [40056 0]
 Wordsize : 32 bits
 Address Units per value : 4 AU
 Representation : signed
 Binary point position : 0
 Size : [1]
 Total address units : 4 AU
 Array ordering : row-major
 Endianness : little
 Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,
MatlabLink=3, EmbeddedTargetC6x=4

11 write(cfield,4)

12 read(cvar)

ans =

 iy: [2x3 double]
 iz: 'EmbeddedTargetC6x'

Your command write(cfield,4) replaced the string MatlabLink with the
fourth value EmbeddedTargetC6x. That is an example of writing to an
embedded variable by value.

13 cstring = createobj(cc,'myString')

createobj returns the object cstring that represents a C structure embedded
in the project. When you leave off the closing semicolon (;) on the command,
you see

STRING Object :
 Symbol Name : myString
 Address : [40104 0]
 Total wordsize : 8 bits
4

Tutorial 1-1—Using Links and Embedded Objects
 Address Units per value : 1 AU
 Representation : signed
 Binary point position : 0
 Size : [29]
 Total address units : 29 AU
 Array ordering : col-major
 Endianness : little
 Char Conversion Type : ASCII

which provides details about cstring. Using get with cstring returns the
same information, plus more, in a form listing the property names and
property values of cstring.

14 read(cstring)

In response you see the contents of cstring

ans =

Treat me like an ASCII String

15 write(cstring,7,'ME')

This changes the seventh element of MyString to ME. When you reread
cstring, me should be replaced by ME, so the string becomes

Treat ME like an ASCII String

as you see in the next example.

16 read(cstring)

ans =

Treat ME like an ASCII String

17 write(cstring,1,127)

write changes the contents of the first element of MyString to the ASCII
character 127—a nonprinting character.
1-45

1 Introducing Links and Embedded Objects

1-4
18 readnumeric(cstring)

Using readnumeric with a string object returns the numeric equivalent of
the characters in MyString, as shown here.

ans =

 Columns 1 through 12

 127 114 101 97 116 32 77 69 32 108 105 107

 Columns 13 through 24

 101 32 97 110 32 65 78 83 73 32 83 116

 Columns 25 through 29

 114 105 110 103 0

Closing the Links or Cleaning Up CCS IDE
Objects that you create in MATLAB Link for Code Composer Studio have COM
handles to CCS. Until you delete these handles, the CCS process (cc_app.exe
in the Task Manager) remains in memory. Closing MATLAB removes these
COM handles automatically, but there may be times when it helps to delete the
handles manually, without quitting MATLAB. Use clear to remove objects
from your MATLAB workspace and to delete any handles they contain.
clear all deletes everything in your workspace. When you need to retain your
MATLAB data while deleting objects and handles, use clear objname. Note
that this applies both to objects your create with ccsdsp and createobj. To
clean up the objects created during the tutorial, the tutorial program enters

clear cc cvar cfield uintcvar

at the prompt.

One more bit of clean up that this tutorial does is to close the project in CCS
with the command

close(cc,projfile,'project')

Finally, to delete your link to Code Composer, use clear cc.
6

Tutorial 1-1—Using Links and Embedded Objects
Note If a link to CCS IDE exists when you close Code Composer Studio, the
application does not close. Windows moves it to the background (it becomes
invisible). Only after you clear all links to CCS IDE, or close MATLAB, does
closing CCS IDE unload the application. You can see if CCS IDE is running in
the background by checking in the Windows Task Manager. When CCS IDE is
running, the entry cc_app.exe appears in the Image Name list on the
Processes page.

Your development tutorial using CCS IDE is done.

During the tutorial you:

1 Selected your target.

2 Created and queried links to CCS IDE to get information about the link and
the target.

3 Used MATLAB to load files into CCS IDE, and used MATLAB to run that
file.

4 Worked with your CCS IDE project from MATLAB by reading and writing
data to your target, and changing the data from MATLAB.

5 Created and used the embedded objects to manipulate data in a C-like way.

6 Closed the links you opened to CCS IDE.

In future development work with your signal processing applications you
follow the same set of tasks. Thus the tutorial provided here gives you
a working process for using the MATLAB Link for Code Composer Studio and
your signal processing programs to develop programs for a range of Texas
Instruments digital signal processors. While the target may change, and the
program will change, the essentials of the process remain the same, as do the
functions you use to interact with the processor and CCS IDE.
1-47

1 Introducing Links and Embedded Objects

1-4
Tutorial 1-2—Using Links for RTDX
The MATLAB Link for Code Composer Studio and the links for CCS IDE and
RTDX speed and enhance your ability to develop and deploy digital signal
processing systems on Texas Instruments digital signal processors. By using
MATLAB and the MATLAB Link for Code Composer Studio, your MathWorks
tools, CCS IDE and RTDX work together to help you test and analyze your
processing algorithms in your MATLAB workspace.

In contrast to CCS IDE, using links for RTDX lets you interact with your
process in real time while it’s running on the target. Across the link, you can:

• Send and retrieve data from memory on the processor

• Change the operating characteristics of the program

• Make changes to algorithms as needed without stopping the program or
setting breakpoints in the code

Enabling real-time interaction lets you more easily see your process or
algorithm in action, the results as they develop, and the way the process runs.

This tutorial assumes you have Texas Instruments Code Composer Studio and
at least one DSP development board. You can use the CCS IDE simulator to
run this tutorial. Within the tutorial we use the TMS320C6701 EVM as the
target board, with the C6701 DSP on the C6701 EVM as the target processor.

After you complete the tutorial, either in the demonstration form or by entering
the functions along with this text, you are ready to begin using RTDX to work
with your applications and hardware.

Introducing the Tutorial for Using RTDX
Digital signal processing development efforts begin with an idea for processing
data; an application area, such as audio or wireless communications or
multimedia computing; and a platform or hardware to host the signal
processing. Usually these processing efforts involve applying strategies like
signal filtering, compression, and transformation to change data content; or
isolate features in data; or transfer data from one form to another or one place
to another.

In all cases, developers create algorithms that they need to accomplish the
desired result. Once they have the algorithms, developers use models and DSP
processor development tools to test their algorithms, to determine whether the
8

Tutorial 1-2—Using Links for RTDX
processing achieves the goal, and whether the processing works on the
proposed platform. The MATLAB Link for Code Composer Studio and the links
for RTDX and CCS IDE ease the job of taking algorithms from the model realm
to the real world of the target digital signal processor on which the algorithm
will run.

RTDX and links for CCS IDE provide a communications pathway to
manipulate data and processing programs on your target digital signal
processor. RTDX offers real-time data exchange in two directions between
MATLAB and your target process. Data you send to the target has little effect
on the running process and plotting the data you retrieve from the target lets
you see how your algorithms are performing in real time.

To introduce the techniques and tools available in the MATLAB Link for Code
Composer Studio for using RTDX, the following procedures use many of the
methods in the link software to configure the target processor, open and enable
channels, send data to the target, and clean up after you finish your testing.
Among the functions covered are:

• From links for CCS IDE

- ccsdsp—create links to CCS IDE and RTDX.

- cd—change your CCS IDE working directory from MATLAB.

- open—load program files in CCS IDE.

- run—run processes on the target processor.

• From the RTDX class

- close—close the RTDX links between MATLAB and your target.

- configure—determine how many channel buffers to use and set the size
of each buffer.

- disable—disable the RTDX links before you close them.

- display and disp—return the results of functions get and set. When you
omit the closing semicolon (;) on a function, disp provides the default
display for the results of the operation.

- enable—enable open channels so you can use them to send and retrieve
data from your target.

- isenabled—determine whether channels are enabled for RTDX
communications.
1-49

1 Introducing Links and Embedded Objects

1-5
- isreadable—determine whether MATLAB can read the specified memory
location.

- iswritable—determine whether MATLAB can write to the target.

- msgcount—find out how many messages are waiting in a channel queue.

- open—open channels in RTDX.

- readmat—read data matrices from the target into MATLAB as an array.

- readmsg—read one or more messages from a channel.

- writemsg—write messages to the target over a channel.

This tutorial provides the following procedure to show you how to use many of
the functions in the links. By doing the steps listed, you can work through
many of the operations yourself. As a bonus, the tutorial follows the general
task flow for developing digital signal processing programs through testing
with the links for RTDX.

Four tasks comprise this tutorial:

1 Create an RTDX link to your desired target and load the program to the
processor.

All projects begin this way. Without the links you cannot load your
executable to the target.

2 Configure channels to communicate with the target.

Notice that creating the links in Task 1 did not open communications to the
processor. With the links in place, you open as many channels as you need
to support the data transfer for your development work. This task includes
configuring channel buffers to hold data when the data rate from the target
exceeds the rate at which MATLAB can capture the data.

3 Run your application on the target. At this stage you use MATLAB to
investigate the results of your running process.

The previous tasks are common to all projects where you use RTDX to
communicate with a target. While this step is also common to all
development projects, the program used and the methods and details are up
to you.
0

Tutorial 1-2—Using Links for RTDX
4 Close the links to the target and clean up the links and associated debris left
over from your work.

Once again, all projects end with these tasks. Closing channels and cleaning
up the memory and links you created ensures that CCS IDE, RTDX, and the
MATLAB Link for Code Composer Studio are ready for the next time you
start development on a project.

Within this set of tasks, numbers 1, 2, and 4 are considered fundamental to all
development projects. Whenever you work with MATLAB and links for RTDX,
you perform the functions and tasks outlined and presented in this tutorial.
Where the differences lie is in Task 3. Task 3 is the most important for using
the MATLAB Link for Code Composer Studio to develop your processing
system.

In this tutorial you use an executable program named
rtdxtutorial_6xevm.out as your application. When you use the RTDX and
CCS IDE links to develop applications, replace rtdxtutorial_6xevm.out in
Task 3 with the filename and path to your digital signal processing application.

You can view the tutorial M-file used here by clicking rtdxtutorial. To run
this tutorial in MATLAB, click run rtdxtutorial.

Note To be able to open and enable channels over a link to RTDX, the
program loaded on your target must include functions or code that define the
channels.

Your C source code might look something like this to create two channels, one
to write and one to read.

rtdx_CreateInputChannel(ichan); % Target reads from this.
rtdx_CreateOutputChannel(ochan); % Target writes to this.

These are the entries we use in int16.c (the source code that generates
rtdxtutorial_6xevm.out) to create the read and write channels.
1-51

1 Introducing Links and Embedded Objects

1-5
If you are working with a model in Simulink and using code generation, use
the To Rtdx and From Rtdx blocks in your model to add the RTDX
communications channels to your model and to the executable code on your
target.

One more note about this tutorial. Throughout the code we use the dot notation
(direct property referencing) to access functions and link properties. For
example, we use

cc.rtdx.open('ichan','w');

to open and configure ichan for write mode. You could use an equivalent syntax
instead that does not use direct property referencing.

open(cc.rtdx,'ichan','w');

Or, use

open(rx,'ichan','w');

if you created an alias rx to the RTDX portion of cc, as follows

rx = cc.rtdx;

Creating the Links
With your processing model converted to an executable suitable for your
desired target, you are ready to use the links to test and run your model on your
processor. The MATLAB Link for Code Composer Studio and the links do not
distinguish the source of the executable—whether you used the MATLAB Link
for Code Composer Studio and Real-Time Workshop, CCS IDE, or some other
development tool to program and compile your model to an executable does not
affect the links. So long as your .out file is acceptable to the target you select,
the MATLAB Link for Code Composer Studio provides the links to the
processor.
2

Tutorial 1-2—Using Links for RTDX
Note Program rtdxtutorial_6xevm.out targets the C6701 EVM. We
compiled, built, and linked the program as an executable to run on the C6701
digital signal processor. To use the tutorial without changes, target your
C6701 EVM when you define properties boardnum and procnum.

Before continuing with this tutorial, you must load a valid GEL file to configure
the EMIF registers of your target and perform any required processor
initialization steps. Default GEL files provided by Code Composer Studio are
stored in ..\cc\gel in the folder where you installed Code Composer Studio.
Select File->Load_GEL in CCS IDE to load the default GEL file that matches
your processor family, such as init6x0x.gel for the C6x0x processor family,
and your configuration.

Begin the process of getting your model onto the target by creating a link to
CCS IDE. Start by clearing all existing handles and setting echo on so you see
functions in the M-file execute as the program runs:

1 clear all; echo on;

clear all has the side effect of removing debugging breakpoints and
resetting persistent variables since function breakpoints and persistent
variables are cleared whenever the M-file changes or is cleared. Breakpoints
within your executable remain after clear. Clearing the MATLAB
workspace does not affect your executable.

2 Now construct the link to your target board and processor by typing

cc=ccsdsp('boardnum',0);

boardnum defines which board the new link accesses. In this example,
boardnum is 0. The MATLAB Link for Code Composer Studio connects the
link to the first, and in this case only, processor on the board. To find the
boardnum and procnum values for the boards and simulators on your system,
use ccsboardinfo. When you type
1-53

1 Introducing Links and Embedded Objects

1-5
ccsboardinfo

at the prompt, the MATLAB Link for Code Composer Studio returns a list
like the following one that identifies the boards and processors in your
computer.

3 To open and load the target file, change the path for MATLAB to be able to
find the file.

tgt_dir = fullfile(matlabroot,'toolbox','tidsp','tidemos','tutorial');
cd(cc,tgt_dir); % Or cc.cd(tgt_dir)
dir(cc); % Or cc.dir

4 You have reset the directory path to find the tutorial file. Now open the file.

cc.open('rtdxtutorial_6xevm.out')

Because open is overloaded for the CCS IDE and RTDX links, this may seem
a bit strange. In this syntax, open loads your executable file onto the target
processor identified by cc. Later in this tutorial, you use open with a
different syntax to open channels in RTDX.

In the next section, you use the new link to open and enable communications
between MATLAB and your target.

Configuring Communications Channels
Communications channels to the target do not exist until you open and enable
them through the MATLAB Link for Code Composer Studio and CCS IDE.
Opening channels consists of opening and configuring each channel for reading
or writing, and enabling the channels.

In the open function, you provide the channel names as strings for the channel
name property. The channel name you use is not random. The channel name
string must match a channel defined in the executable file. If you specify
a string that does not identify an existing channel in the executable, the open

Board Board Proc Processor Processor

Num Name Num Name Type

1 C6xxx Simulator (Texas Inst... 0 CPU TMS320C6211

0 C6701 EVM (Texas Instruments) 0 CPU_1 TMS320C6701
4

Tutorial 1-2—Using Links for RTDX
operation fails. In this tutorial, two channels exist on the target—ichan and
ochan. Although the channels are named ichan for input channel and ochan for
output channel, neither channel is configured for input or output until you
configure them from MATLAB or CCS IDE. You could configure ichan as the
output channel and ochan as the input channel. The links would work just the
same. For simplicity, the tutorial configures ichan for input and ochan for
output. One more note—read and write are defined as seen by the target. When
you write data from MATLAB, you write to the channel that the target reads,
ichan in this case. Conversely, when you read from the target, you read from
ochan, the channel that the target writes to:

1 Configure buffers in RTDX to store the data until MATLAB can read it into
your workspace. Often, MATLAB cannot read data as quickly as the target
can write it to the channel.

cc.rtdx.configure(1024,4); % define 4 channels of 1024 bytes each

Channel buffers are optional. Adding them provides a measure of insurance
that data gets from your target to MATLAB without getting lost.

2 Define one of the channels as a write channel. Use 'ichan' for the channel
name and 'w' for the mode. Either 'w' or 'r' fits here, for write or read.

cc.rtdx.open('ichan','w');

3 Now enable the channel you opened.

cc.rtdx.enable('ichan');

4 Repeat steps 2 and 3 to prepare a read channel.

cc.rtdx.open('ochan','r');
cc.rtdx.enable('ochan');

5 To use the new channels, enable RTDX by typing

cc.rtdx.enable;

You could do this step before you configure the channels—the order does not
matter.

6 Reset the global timeout to 20 s to provide a little room for error. ccsdsp
applies a default timeout value of 10 s. In some cases this may not be
enough.
1-55

1 Introducing Links and Embedded Objects

1-5
cc.rtdx.get('timeout')
ans =

10
cc.rtdx.set('timeout', 20); % Reset timeout = 20 seconds

7 Check that the timeout property value is now 20 s and that your link has
the correct configuration for the rest of the tutorial.

cc.rtdx

RTDX Object:
 API version: 1.0
 Default timeout: 20.00 secs
 Open channels: 2

Running the Application
To this point you have been doing housekeeping functions that are common to
any application you run on the target. You load the target, configure the
communications, and set up other properties you need.

In this tutorial task, you use a specific application to demonstrate a few of the
functions available in the MATLAB Link for Code Composer Studio that let
you experiment with your application while you develop your prototype. To
demonstrate the link for RTDX readmat, readmsg, and writemsg functions, you
write data to your target for processing, then read data from the target after
processing:

1 Restart the program you loaded on the target. restart ensures the program
counter (PC) is at the beginning of the executable code on the processor.

cc.restart

Restarting the target does not start the program executing. You use run to
start program execution.

2 Type cc.run('run');

Using 'run' for the run mode tells the processor to continue to execute the
loaded program continuously until it receives a halt directive. In this mode,
6

Tutorial 1-2—Using Links for RTDX
control returns to MATLAB so you can work in MATLAB while the program
runs. Other options for the mode are

- 'runtohalt'—start to execute the program and wait to return control to
MATLAB until the process reaches a breakpoint or execution terminates.

- 'tohalt'—change the state of a running processor to 'runtohalt' and wait
to return until the program halts. Use tohalt mode to stop the running
processor cleanly.

3 Type the following functions to enable the write channel and verify that the
enable takes effect.

cc.rtdx.enable('ichan');
cc.rtdx.isenabled('ichan')

If MATLAB responds ans = 0 your channel is not enabled and you cannot
proceed with the tutorial. Try to enable the channel again and reverify the
status.

4 Write some data to the target. Check that you can write to the target, then
use writemsg to send the data. You do not need to type the if-test code
shown.

if cc.rtdx.iswritable('ichan'), % Used in a script application.
 disp('writing to target...') % Optional to display progress.
 indata=1:10
 cc.rtdx.writemsg('ichan', int16(indata))
end % Used in scripts for channel testing.

We included the if-statement to simulate writing the data from within a
MATLAB script. The script uses iswritable to check that the input channel
is functioning. If iswritable returns 0 the script would skip the write and
exit the program, or respond in some way. When you are writing or reading
data to your target in a script or M-file, checking the status of the channels
can help you avoid errors during execution.

As your application runs you may find it helpful to display progress
messages. In this case, the program directed MATLAB to print a message as
it reads the data from the target by adding the function

disp('writing to target...')
1-57

1 Introducing Links and Embedded Objects

1-5
Note Function cc.rtdx.writemsg('ichan', int16(indata)) results in 20
messages stored on the processor. Here’s how.

When you write indata to the target, the following code running on the target
takes your input data from ichan, adds one to the values and copies the data
to memory:

while (!RTDX_isInputEnabled(&ichan))

{/* wait for channel enable from MATLAB */}
RTDX_read(&ichan, recvd, sizeof(recvd));
puts("\n\n Read Completed ");

for (j=1; j<=20; j++) {
for (i=0; i<MAX; i++) {
recvd[i] +=1;

}
while (!RTDX_isOutputEnabled(&ochan))
{ /* wait for channel enable from MATLAB */ }

RTDX_write(&ochan, recvd, sizeof(recvd));
 while (RTDX_writing != NULL)
 { /* wait for data xfer INTERRUPT DRIVEN for C6000 */ }
}

Program int16_rtdx.c contains this source code. You can find the file in a
folder in the ..\tidemos\rtdxtutorial directory.

5 Type the following to check the number of available messages to read from
the target.

num_of_msgs = cc.rtdx.msgcount('ochan');

num_of_msgs should be zero. Using this process to check the amount of data
can make your reads more reliable by letting you or your program know how
much data to expect.

6 Type the following to verify that your read channel ochan is enabled for
communications.
8

Tutorial 1-2—Using Links for RTDX
cc.rtdx.isenabled('ochan')

You should get back ans = 0—you have not enabled the channel yet.

7 Now enable and verify 'ochan'.

cc.rtdx.enable('ochan');
cc.rtdx.isenabled('ochan')

To show that ochan is ready, MATLAB responds ans = 1. If not, try
enabling ochan again.

8 Type

pause(5);

The pause function gives the processor extra time to process the data in
indata and transfer the data to the buffer you configured for ochan.

9 Repeat the check for the number of messages in the queue. There should be
20 messages available in the buffer.

num_of_msgs = cc.rtdx.msgcount('ochan')

With num_of_msgs = 20, you could use a looping structure to read the
messages from the queue in to MATLAB. In the next few steps of this
tutorial you read data from the ochan queue to different data formats within
MATLAB.

10 Read one message from the queue into variable outdata.

outdata = cc.rtdx.readmsg('ochan','int16')

outdata =
2 3 4 5 6 7 8 9 10 11

Notice the 'int16' represent option. When you read data from your target
you need to tell MATLAB the data type you are reading. You wrote the data
in step 4 as 16-bit integers so you use the same data type here.

While performing reads and writes, your process continues to run. You did
not need to stop the processor to get the data or send the data, unlike using
most debuggers and breakpoints in your code. You placed your data in
1-59

1 Introducing Links and Embedded Objects

1-6
memory across an RTDX channel, the processor used the data, and you read
the data from memory across an RTDX channel, without stopping the
processor.

11 You can read data into cell arrays, rather than into simple double-precision
variables. Use the following function to read three messages to cell array
outdata, an array of three, 1-by-10 vectors. Each message is a 1-by-10 vector
stored on the processor.

outdata = rtdx.readmsg('ochan','int16',3)

outdata =
[1x10 int16] [1x10 int16] [1x10 int16]

12 Cell array outdata contains three messages. Look at the second message, or
matrix, in outdata by using dereferencing with the array.

outdata{1,2}

outdata =
4 5 6 7 8 9 10 11 12 13

13 Read two messages from the target into two 2-by-5 matrices in your
MATLAB workspace.

outdata = cc.rtdx,readdmsg('ochan','int16',[2 5],2)

outdata =
[2x5 int16] [2x5 int16]

To specify the number of messages to read and the data format in your
workspace, you used the siz and nummsgs options set to [2 5] and 2.

14 You can look at both matrices in outdata by dereferencing the cell array
again.

outdata{1,:}

ans =
6 8 10 12 14
7 9 11 13 15

ans =
7 9 11 13 15
0

Tutorial 1-2—Using Links for RTDX
8 10 12 14 16

15 For a change, read a message from the queue into a column vector.

outdata = cc.rtdx.readmsg('ochan','int16',[10 1])

outdata =
8
9
10
11
12
13
14
15
16
17

16 The MATLAB Link for Code Composer Studio provides a function for
reading messages into matrices — readmat. Use readmat to read a message
into a 5-by-2 matrix in MATLAB.

outdata = readmat('ochan','int16',[5 2])

outdata =
9 14
10 15
11 16
12 17
13 18

Since a 5-by-2 matrix requires ten elements, MATLAB reads one message
into outdata to fill the matrix.

17 To check your progress, see how many messages remain in the queue. You
have read eight messages from the queue so 12 should remain.

num_of_msgs = cc.rtdx.msgcount('ochan')

num_of_msgs =
12
1-61

1 Introducing Links and Embedded Objects

1-6
18 To demonstrate the connection between messages and a matrix in MATLAB,
read data from 'ochan' to fill a 4-by-5 matrix in your workspace.

outdata = cc.rtdx.readmat('ochan','int16',[4 5])

outdata =
10 14 18 13 17
11 15 19 14 18
12 16 11 15 19
13 17 12 16 20

Filling the matrix required two messages worth of data.

19 To verify that the last step used two messages recheck the message count.
You should find 10 messages waiting in the queue.

num_of_msgs = cc.rtdx.msgcount('ochan')

20 Continuing with matrix reads, fill a 10-by-5 matrix (50 matrix elements or
five messages).

outdata = cc.rtdx.readmat('ochan','int16',[4 5])

outdata =
12 13 14 15 16
13 14 15 16 17
14 15 16 17 18
15 16 14 18 19
16 17 18 19 20
17 18 19 20 21
18 19 20 21 22
19 20 21 22 23
20 21 22 23 24
21 22 23 24 25

21 Recheck the number of messages in the queue to see that five remain.

22 flush lets you remove messages from the queue without reading them. Data
in the message you remove is lost. Use flush to remove the next message in
the read queue. Then check the waiting message count.

cc.rtdx.flush('ochan',1)
num_of_msgs = cc.rtdx.msgcount('ochan')
2

Tutorial 1-2—Using Links for RTDX
num_of_msgs =

4

23 Empty the remaining messages from the queue and verify that the queue is
empty.

cc.rtdx.flush('ochan','all')

With the 'all' option, flush discards all messages in the ochan queue.

Closing the Links or Cleaning Up
One of the most important programmatic processes you should do in every
RTDX session is to clean up at the end. Cleaning up includes stopping your
target processor, disabling the RTDX channels you enabled, disabling RTDX
and closing your open channels. Performing this series of tasks ensures that
future processes avoid trouble caused by unexpected interactions with left-over
handles, channels, and links from your earlier development work. Best
practices suggest that you include the following tasks (or an appropriate subset
that meets your development needs) in your development scripts and
programs.

We use four functions in this section; each has a purpose—the operational
details in the following list explain how and why we use each one. They are

• clear—remove all RTDX objects and handles associated with a CCS and
RTDX link. When you finish a session with RTDX, clear removes all traces
of the specified link, or all links when you use the 'all' option in the syntax.
When you clear one or more links, they no longer exist and cannot be
reopened or used. If you are ending your programming session and do not
want to retain any of the channels or links you created, use clear to end the
RTDX communications and links and release all channels and resources
associated with existing CCS IDE and RTDX links. You do not need to use
the close or disable functions first.

To load a new program to a processor on which you have a program running,
and to which you have links, you must clear the existing links before you load
the new program to the target.
1-63

1 Introducing Links and Embedded Objects

1-6
• close—close the specified RTDX channel. To use the channel again, you
must open and enable the channel. Compare close to disable.
close('rtdx') closes the communications provided by RTDX. After you
close RTDX, you cannot communicate with your target.

• disable—remove RTDX communications from the specified channel, but
does not remove the channel, or link. Disabling channels may be useful when
you do not want to see the data that is being fed to the channel, but you may
want to read the channel later. By enabling the channel later, you have
access to the data entering the channel buffer. Note that data that entered
the channel while it was disabled is lost.

• halt—stop a running processor. You may still have one or more messages in
the host buffer.

Use the following procedure to shut down communications between MATLAB
and the target, and end your session:

1 Begin the process of shutting down the target and RTDX by stopping the
target processor. Type the following functions at the prompt.

if (isrunning) % Use this test in scripts.
cc.halt; % Halt the processor.

end % Done.

Your processor may already be stopped at this point. In a script, you might
put the function in an if-statement as we have done here. Consider this test
to be a safety check. No harm comes to the processor if it is already stopped
when you tell it to stop. When you direct a stopped processor to halt, the
function returns immediately.

2 You have stopped the processor. Now disable the RTDX channels you opened
to communicate with the target.

cc.rtdx.disable('all');

If necessary, using disable with channel name and target identifier input
arguments lets you disable only the channel you choose. When you have
4

Tutorial 1-2—Using Links for RTDX
more than one board or processor, you may find disabling selected channels
meets your needs.

When you finish your RTDX communications session, disable RTDX to
ensure that the MATLAB Link for Code Composer Studio releases your open
channels before you close them.

cc.rtdx.disable;

3 Use one or all of the following function syntaxes to close your open channels.
Either close selected channels by using the channel name in the function, or
use the 'all' option to close all open channels.

- cc.rtdx.close('ichan') to close your input channel in this tutorial.

- cc.rtdx.close('ochan') to close your output channel in the tutorial.

- cc.rtdx.close('all') to close all of your open RTDX channels,
regardless of whether they are part of this tutorial.

Consider using the 'all' option with the close function when you finish your
RTDX work. Closing channels reduces unforeseen problems caused by
channel objects that may exist but do not get closed correctly when you end
your session.

4 When you created your RTDX link (cc = ccsdsp('boardnum',1) at the
beginning of this tutorial, the ccsdsp function opened CCS IDE and set the
visibility to 0. To avoid problems that occur when you close the link to RTDX
with CCS visibility set to 0, be sure to make CCS IDE visible on your
desktop. The following if-statement checks the visibility and changes it if
needed.

if cc.isvisible,
 cc.visible(1);
end
1-65

1 Introducing Links and Embedded Objects

1-6
Note Visibility can cause problems. When CCS IDE is running invisibly on
your desktop, meaning you set visibility to 0, do not use clear all to get
rid of your links for CCS IDE and RTDX. Without a link to CCS IDE you
cannot access CCS IDE to change the visibility setting, or unload the
application. To close CCS IDE when you do not have an existing link, either
create a new link to CCS IDE, or use Windows Task Manager to end the
process cc_app.exe, or close MATLAB.

5 You have finished the work in this tutorial, type the following to close all
your remaining links to CCS IDE and release all the associated resources.

clear ('all'); % Calls the link destructors to remove all links
echo off

Note that clear all (without the parentheses) removes all variables from
your MATLAB workspace.

You have completed the tutorial using RTDX. During the tutorial you:

1 Opened links to CCS IDE and RTDX and used those links to load an
executable program to your target processor.

2 Configured a pair of channels so you could transfer data to and from your
target.

3 Ran the executable on the target, sending data to the target for processing
and retrieving the results.

4 Stopped the executing program and closed the links to CCS IDE and RTDX.

In future development work with your signal processing applications you
follow the same set of tasks. Thus the tutorial provided here gives you a
working process for using the MATLAB Link for Code Composer Studio and
your signal processing programs to develop programs for a range of Texas
Instruments digital signal processors. While the target may change, the
essentials of the process remain the same.
6

Tutorial 1-2—Using Links for RTDX
Listing the Functions for Links
To review a complete list of functions that operate on links, either CCS IDE or
RTDX, type either

help ccsdsp
help rtdx

at the command line. If you already have a link cc, you can use dot notation to
return the methods for CCS IDE or RTDX by entering

cc.methods or cc.rtdx.methods

at the prompt. In either instance MATLAB returns a list of the available
functions for the specified link type, including both public and private
functions. For example, to see the functions (methods) for links to CCS IDE,
type:

help ccsdsp

CCDSP - Base constructor for the 'Link to Code Composer Studio(tm)'
 Description of methods available for CCSDSP

 ACTIVATE Set the active project, text file or build configuration
 ADD Add source file to a project
 ANIMATE Initiate a target execution with breakpoint animation
 ADDRESS Search the target's symbol table for an address
 BUILD Compile/Link to build a program file
 CCSDSP Constructor which establishes the link to CCS
 CD Change or query working directory of Code Composer Studio
 CLOSE Close Code Composer Studio project or text file
 CREATEOBJ Creates objects for manipulating target values
 DELETE Delete a debug point from DSP memory
 DIR List files in Code Composer Studio working directory
 DISP Display information about the CCSDSP object
 GOTO Executes the target to the entry of a function
 HALT Immediately terminate execution of the DSP processor
 INFO Produce a list of information about the target processor
 INSERT Insert a debug point into DSP memory
 ISREADABLE Query if a block of DSP memory is available for reading
 ISRUNNING Query status of DSP execution
 ISRTDXCAPABLE Query if DSP supports RTDX communications
 ISVISIBLE Query visibility of Code Composer Studio application
 ISWRITABLE Query if a block of DSP memory is available for writing
 LIST Produces various lists of information from Code Composer
 LOAD Loads a program file into the DSP processor
 NEW Create a default project, text file or build configuration
1-67

1 Introducing Links and Embedded Objects

1-6
 OPEN Loads a workspace, project or program file
 PROFILE Return measurements from any DSP/BIOS(tm) STS objects
 READ Return a block of data from the memory of the DSP
 REGREAD Return data storied in a DSP register
 REGWRITE Modify the contents of a DSP register
 RELOAD Reload most recently loaded program file
 REMOVE Remove a file from a project
 RESTART Return PC to the beginning of a target program
 RUN Initiates execution of the DSP processor
 SAVE Save Code Composer Studio project or text file
 SYMBOL Returns the target's entire symbol table
 VISIBLE Hide or reveal Code Composer Studio application window
 WRITE Places a block of Matlab data into the memory of the DSP
8

2

Objects for MATLAB Link
Software

These sections of the User’s Guide introduce both the objects you use to work with the software and a
tutorial and reference pages for using the objects.

Introduction to Objects (p. 2-3) Object classes that compose MATLAB Link for Code
Composer Studio

Numeric Objects—Their Methods
and Properties (p. 2-17)

Reference numeric data in memory

Bitfield Objects—Their Methods and
Properties (p. 2-20)

Objects that reference bitfield data in memory

Enum Objects—Their Methods and
Properties (p. 2-23)

Objects that reference enumerated data in memory

Pointer Objects—Their Methods and
Properties (p. 2-26)

Reference pointers in memory

String Objects—Their Methods and
Properties (p. 2-29)

Introduces objects that reference strings in memory

Rnumeric Objects—Their Methods
and Properties (p. 2-32)

Introduces objects that reference numeric data in registers

Renum Objects—Their Methods and
Properties (p. 2-35)

Objects that reference enumerated data in registers

Rpointer Objects—Their Methods
and Properties (p. 2-39)

Introduces objects that reference pointers in registers

Rstring Objects—Their Methods and
Properties (p. 2-42)

Introduces objects that reference strings in registers

Function Objects—Their Methods
and Properties (p. 2-45)

About objects that reference functions, either ANSI C or
assembly (that have C prototypes), in your project

2 Objects for MATLAB Link Software

2-2
Structure Objects—Their Methods
and Properties (p. 2-49)

Introduces objects that reference data structures

Type Objects—Their Methods and
Properties (p. 2-51)

Objects that reference typedefs in your project source code

Constructing Objects That Access
Bitfields (p. 2-53)

Introduces the concepts behind using bitfield objects

Creating Function Objects (p. 2-55) Provides an extensive introduction to function objects

Creating Type Objects (p. 2-71) Shows some of the ways you use type objects in projects

Tutorial 2-1—Using Function Objects
and Hardware-in-the-Loop (p. 2-74)

Run a tutorial that shows you how to work with function
objects and use them in a hardware-in-the-loop fashion

Managing Custom Data Types with
the Data Type Manager (p. 2-105)

Describes and demonstrates how you use custom data
types that are part of your projects

Reference for the Properties of
Embedded Objects (p. 2-116)

Provides a comprehensive property reference

Introduction to Objects
Introduction to Objects
Within your MATLAB Link for Code Composer Studio Development Tools
software, the links and the objects use object-oriented programming
techniques. Along with the link object you use to connect MATLAB to your
target hardware, MATLAB Link for Code Composer Studio provides many
objects for creating, accessing (reading from and writing to), and manipulating
(changing the contents of in MATLAB) all the symbols in the symbol table for
a program loaded on your signal processor. Within the table, each object in the
class name column provides access to objects as described.

Class Name Inherits From Description

bitfield memoryobj class Access the contents of a
bitfield defined in your code

enum numeric class Contents of an enumerated
data type stored in memory
defined in your code

function None Contents of a function in your
source code, or used in your
project as a library function.
Can also represent new
functions you develop and add
to your project.

numeric memoryobj class Access the contents of a
numeric data type stored in
memory defined in your code

pointer numeric class Contents of a pointer stored
in a memory location on your
target

renum rnumeric class Contents of an enumerated
data type stored in a register
on your target
2-3

2 Objects for MATLAB Link Software

2-4
In the Inherits From column you see the name of another class. Classes that
inherit from another class contain all the properties and methods of the
Inherited From class as well as their own unique properties. Note that
although object and class seem to be interchangeable, objects are instances of
classes—the properties of a class are the properties of an instance of the class,
an object. This guide treats the distinction fairly loosely, using object in most
instances.

For example, the String object has the properties and methods of the Numeric
class, and its own properties and methods.

By using the objects provided, you can modify and view any and all symbols
from MATLAB.

Each of the objects has properties and methods specific to its use, although
many of the objects use the same methods and properties, as you see in the next
sections.

While you can use the MATLAB Link for Code Composer Studio software
without knowing about its object-oriented design and implementation, you

rnumeric registerobj class Contents of register that
contains a numeric data type

rpointer rnumeric class Contents of a pointer stored
in a register on your target

rstring rnumeric class Contents of a string stored in
a register on your target

string numeric class Contents of a string stored in
a memory location on your
target

structure None Contents of a structure stored
in memory on your target

type None Typedefs stored in memory on
your target after you add
them to the type object

Class Name Inherits From Description

Introduction to Objects
might find the next sections about objects useful to gain a better understanding
of the objects.

Some Object-Oriented Programming Terms
As an object-oriented software package, describing how to use the MATLAB
Links for Code Composer Studio requires discussing the objects, classes,
properties, and methods you use to manipulate and access data. To ensure we
use the same terms and understand them in the same way, this section
provides definitions of some terms commonly used throughout the this guide.
2-5

2 Objects for MATLAB Link Software

2-6
Definitions of Object-Oriented Terms

Abstract class A class without instances. Abstract classes
expect that their concrete subclasses will
add to their structure and behavior.

Aggregation The part-of relationship between two
objects. For example, a bicycle has wheels,
so wheels are part of a bicycle. Note that the
wheels can exist separately from the bicycle.
Compare to composition.

Base class The most general class in a class structure.
Also called root classes, most applications or
systems have more than one base class.

Behavior How an object reacts to its methods. How
the object state changes in response to one
of its methods acting on it.

Class A set of abstract objects that share a
common structure and behavior. A class
forms the prototype that defines the
properties and methods common to all
objects of the class. Types and classes are
not quite the same, but are used
interchangeably in this guide.

Class diagram Used to show the existence of classes and
their relationships. Class diagrams can
represent part or all of the class structure of
a system.

Composition A relationship between objects where one
part object exists only as part of the whole
object. The parts live and die together. You
create and destroy them as one.

Constructor A function that creates an object and
initializes its state. Constructors can also
initialize the state without creating the
object.

Introduction to Objects
Container Class A class whose instances are collections of
other objects in the system. Also called a
package.

Function Same as method. Used in MATLAB for
consistency with other functions. Functions
and methods are not quite the same, but are
used interchangeably.

Handle A means to access any object that MATLAB
Link for Code Composer Studio creates.
Used in this guide to refer to the object.
Often the handle is the name you assign
when you create the object. For example, cc
is the object and handle when you create a
link object.

Inheritance A relationship between classes. One class
shares the structure (properties) and
behavior (methods) defined in one or more
other classes. Subclasses inherit from one or
more superclasses, typically augmenting the
superclass with their own properties and
methods.

Instance Something you can operate on. Instance and
object are synonyms and this guide uses
them interchangeably. Instantiate is the
verb form—to create an instance of a class
or object.

Instantiation To create an object—an instance of a class.

Method An operation on an object, defined as part of
the class of the object. We call this
a function.
2-7

2 Objects for MATLAB Link Software

2-8
Object Something you can operate on. Objects that
are the same class share similar structure
and behavior. An object is a collection of
properties and methods. Some sources call
properties “variables.” In all cases, an object
is an instance of a class. Classes are
abstract; objects are not.

Object Diagram Shows the existence of objects and their
relationships in the logical design of a
system. Object diagrams can represent part
or all of the class structure of a system.

Object-based Programming Programming style that organizes programs
as cooperative collections of objects.

Each object represents an instance of a type;
where the types are members of an
hierarchy, united through relationships that
are not inheritance relationships. Compare
to object-oriented programming.

Object-oriented Programming Programming implementation that
organizes programs as cooperative
collections of objects.

Each object represents an instance of some
class, and the classes are members of an
hierarchy of classes united through
inheritance relationships. Compare to
object-based programming.

Property Part of an object—treated as a variable at
times. Also called attribute, it is part of the
structure that defines the state of an object.

Subclass A class that inherits from one or more
classes, called its superclasses.

Superclass A class that other classes inherit from. The
inheriting classes are called subclasses.

Introduction to Objects
For more information about objects and working with their properties and
methods (or functions), refer to “Constructing Link Objects” on page 1-7.

Note Except for read and write, all functions that work with objects operate
solely in your MATLAB workspace. They do not affect the data stored in
memory, registers, functions, or structures on your signal processor and in
CCS. Only read and write allow you to access and change information on your
target or in your project in CCS.

Determining an Object Class
After you create an object, use whos to determine the class for your new object
(although you should know the class from the input argument you provided to
createobj). Being able to query the class for an object is particularly important
in this case because the constructor createobj determines the class of the
object created—you cannot specify the object class. Depending on the input
symbol name you provide to createobj, the returned class changes. So you
need to be able to determine the class. whos lets you do this.

If you use the MATLAB Workspace browser, your object appears in the list of
the contents of your workspace, indicating the object type and class—just like
whos.

Alternatively, using createobj or ccsdsp without the closing semicolon (;) at
the end of the command directs MATLAB to display the properties of your new
object in the MATLAB window when you create the object.

About the Relationships Between Objects
MATLAB Link for Code Composer Studio uses objects exclusively to access and
manipulate complex data structures and functions, among other programming

State The accumulated results of the behavior of
an object. At any time, the state of an object
encompasses the properties of the object and
the values for each of the properties.

Structure The concrete representation of the state of
an object.
2-9

2 Objects for MATLAB Link Software

2-1
constructs, in your project and code. Many of the objects inherit properties and
functions, also called methods, from other objects. The class diagrams and
tables presented in the next sections discuss and show the relationships
between the objects that you create when you use createobj.

The Base Classes

Class Name Description

Memoryobj An abstract class. The numeric and bitfield
classes inherit properties and methods from
this class, making this a superclass. You
cannot create an instance of this class.
Subclasses of the memoryobj class always
describe objects that reside in DSP memory on
your target.

Registerobj An abstract class. The rnumeric class inherits
properties and methods from this class,
making this a superclass. You cannot create an
instance of this class. Subclasses of the
registerobj class always describe objects that
reside in DSP registers on your target.
0

Introduction to Objects
The Subclasses

Class Name Description

Numeric A superclass from which the enum, pointer,
and string subclasses inherit properties and
methods. You can create an object of this class
using createobj. Numeric inherits from the
abstract class memoryobj.

Enum A subclass of the numeric class. You can create
an object of this class using createobj.

Pointer A subclass of the numeric class. You can create
an object of this class using createobj.

String A subclass of the numeric class. You can create
an object of this class using createobj.

Bitfield A subclass of the memoryobj class. You can use
createobj to make a bitfield object.

Rnumeric A superclass from which the renum, rpointer,
and rstring subclasses inherit properties and
methods. You can create an object of this class
using createobj. Rnumeric inherits from the
abstract class registerobj.

Renum A subclass of the registerobj class. You can
create an object of this class using createobj.

Rpointer A subclass of the registerobj class. You can
create an object of this class using createobj.

Rstring A subclass of the registerobj class. You can
create an object of this class using createobj.
2-11

2 Objects for MATLAB Link Software

2-1
Other Classes

Class Diagrams for the MATLAB Link for Code
Composer Studio
One of the most important features of object-oriented programming is the
relationship between the classes that compose the system. Class relationships
lend themselves to a graphical layout like a tree structure, where the structure
of the tree shows clearly the super classes and subclasses, the base classes, and
the other classes. In addition, the diagrams can show the properties and
methods for each class, and where a subclass adds properties and methods to
those it inherits from its superclass.

The following figures show the methods and properties of each class or object.
For short descriptions about the properties for each class, refer to the tables in
the following sections:

• “Numeric Objects—Their Methods and Properties” on page 2-17

• “Bitfield Objects—Their Methods and Properties” on page 2-20

• “Enum Objects—Their Methods and Properties” on page 2-23

• “Pointer Objects—Their Methods and Properties” on page 2-26

• “String Objects—Their Methods and Properties” on page 2-29

• “Rnumeric Objects—Their Methods and Properties” on page 2-32

Class Name Description

Function A class containing information about a
function in your project. createobj constructs
this class directly.

Structure A class containing information about a
structure in memory on your target. createobj
constructs this class directly.

Type A class containing information about C type
definitions in the source code for your project.
Type objects are composition objects to ccsdsp
objects. When you create a ccsdsp object, it
includes a type object.
2

Introduction to Objects
• “Renum Objects—Their Methods and Properties” on page 2-35

• “Rpointer Objects—Their Methods and Properties” on page 2-39

• “Rstring Objects—Their Methods and Properties” on page 2-42

• “Function Objects—Their Methods and Properties” on page 2-45

• “Structure Objects—Their Methods and Properties” on page 2-49

• “Type Objects—Their Methods and Properties” on page 2-51

Detailed descriptions of the properties appear in the section “Reference for the
Properties of Embedded Objects” on page 2-116.
2-13

2 Objects for MATLAB Link Software

2-1
Class Diagram of the Memory Class

+copy()
-disp()
+memoryobj()
+read()
+readbin()
+readhex()
+write()
+writebin()

-address : <unspecified> = [0 0]
+bitsperstorageunit : double = 8
+link
+name
+numberofstorageunits : double = 1
+timeout : double = 10 secs

memoryobj Class

+numeric()
+cast()
+convert()
+display()
+reshape()

+arrayorder : <unspecified> = col-major
-binarypt : double = 0
-endianness : <unspecified> = little
-postpad : double = 0
-prepad : double = 0
-represent : <unspecified> = signed
+size : <unspecified> = 1
+storageunitspervalue : double = 1
-wordsize : <unspecified> = 0

memoryobj Class::numeric Class

+enum()
+equivalent()

-label
-value

numeric Class::enum Class

+deref()
+pointer()

+typestring

numeric Class::pointer Class

+equivalent()
+readnumeric()
+string()

+charconversion

numeric Class::string Class

+bitfield()
+cast()
+convert()

+arrayorder
+binarypt
+endianness
+length
+name
+offset
+prepad
+postpad
+size
+storageunitspervalue
+represent
+wordsize

memoryobj Class::bitfield Class
4

Introduction to Objects
Class Diagram of the Register Class

+copy()
-disp()
+read()
+readbin()
+readhex()
+registerobj()
+write()
+writebin()

+regname : <unspecified> = [0 0]
+bitsperstorageunit : double = 8
+link
+numberofstorageunits : double = 1
+timeout : double = 10 secs

registerobj Class

+rnumeric()
+cast()
+convert()
+reshape()
+display()

+arrayorder : <unspecified> = col-major
-binarypt : double = 0
-endianness : <unspecified> = little
-name
-postpad : double = 0
-prepad : double = 0
-represent : <unspecified> = signed
+size : <unspecified> = 1
+storageunitspervalue : double = 1
-wordsize : <unspecified> = 0

registerobj Class::rnumeric Class

+equivalent()
+renum()

+label
+value

rnumeric Class::renum Class

+deref()
+rpointer()

+typestring : String = void

rnumeric Class::rpointer Class

+equivalent()
+readnumeric()
+rstring()

+charconversion

rnumeric Class::rstring Class
2-15

2 Objects for MATLAB Link Software

2-1
Class Diagram of the Structure, Function, and Type Classes

+read()
+write()

+name
+member
+membname
+memboffset
+address
+storageunitspervalue : double
+size

structure Class

+addregister()
+assignreturnstorage()
+cleanup()
+copy()
+declaration()
+deleteregister()
-display()
+getinput()
+execute()
+getoutput()
+goto()
+list()
+read()
+resume()
+run()
+write()

+name
+filename
+address
+type
+savedregs
+variables
+inputnames
+inputvars
+outputvar
+link
+timeout : double

function Class

+add()
+clear()
+display()
+gettypeinfo()

-boardnum
-procnum
+typelist
+typename

type Class
6

Numeric Objects—Their Methods and Properties
Numeric Objects—Their Methods and Properties
When you create an object that accesses a numeric symbol in your source code,
the object constructor createobj returns a numeric object. createobj uses the
information in your source code to set the properties of the object appropriately
to match the code. Within the properties and their values you find all the
information about the symbol, so that MATLAB understands how to handle the
symbol in your MATLAB workspace.

To add to the properties of the numeric class, numeric objects inherit properties
and methods from the memory class.

Properties of Numeric Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property Type Default Value Description

name string None Name of the embedded symbol
in the symbol table

arrayorder {col-major,row
-major}

col-major Ordering of values when moving
data from linear memory
storage to N-D arrays in
MATLAB

address mxArray [0 0] Memory address of the symbol,
in [Offset Page] format

bitsperstorageunit double 8 Bits per smallest addressable
unit in the signal processor

numberofstorageunits double 1 Number of storage units needed
to represent the object

link MATLAB handle None Object handle that identifies the
object
2-17

2 Objects for MATLAB Link Software

2-1
Methods of Numeric Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not

timeout double 10 seconds Time-out period for link
methods

endianness {little, big} 'little' Specifies whether the data is
stored as little endian or big
endian data

postpad int 0 Number of bits of padding
added at the end of the memory
buffer. Added bits are ignored in
final numeric values

prepad int 0 Number of bits of padding
added at the beginning of the
memory buffer. Added bits are
ignored in final numeric values

represent {signed,
unsigned,
float, fract,
ufract}

signed Reports the data type of the
values

size mxArray 1 Specifies the size of the array
created in MATLAB from the
data received from memory

storageunitspervalue int 32 Addressable units (au) per value
in memory. May be less than one
when you use bit packing

Property Name Property Type Default Value Description
8

Numeric Objects—Their Methods and Properties
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself.

Name Overloaded? Description

cast Yes Copies an object and change the
data type for a value at the
same time

convert No Changes the data type for a
value

reshape Yes Changes the dimensions of the
array that contains the data in
MATLAB

display Yes Display the properties of the
numeric object
2-19

2 Objects for MATLAB Link Software

2-2
Bitfield Objects—Their Methods and Properties
When you create an object that accesses a bitfield symbol in your source code,
the object constructor createobj returns a struct object the includes the
bitfield as members of the struct object. Bitfields are always parts of
structures, so you create struct objects to access bitfields. createobj uses the
information in your source code to set the properties of the object appropriately
to match the code. Within the properties and their values, you find all the
information about the symbol, so that MATLAB understands how to handle the
symbol in your MATLAB workspace.

To add to the properties of the class, bitfield objects inherit properties and
methods from the numeric and memoryobj classes.

Properties of Bitfield Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property Type Default Value Description

name string None Name of the embedded symbol in
the symbol table

arrayorder {col-major,row
-major}

row-major Ordering of values when moving
data from linear memory storage
to N-D arrays in MATLAB

address mxArray [0 0] Memory address of the symbol, in
[Offset Page] format

bitsperstorageunit double 8 Bits per addressable unit in the
signal processor

numberofstorageunits double 1 Number of memory units needed
to represent the object
0

Bitfield Objects—Their Methods and Properties
link MATLAB handle None Object handle that identifies the
object

timeout double 10 seconds Time-out period for link methods

endianness {little, big} little Specifies whether the data is
stored as little endian or big
endian data

postpad int 0 Number of bits of padding added
at the end of the memory buffer.
Added bits are ignored in final
numeric values

prepad int 0 Number of bits of padding added
at the beginning of the memory
buffer. Added bits are ignored in
final numeric values

represent {signed,
unsigned,
float, fract,
ufract}

signed Reports the data type of the
values

size mxArray 1 Size of the array created in
MATLAB from the data received
from memory

storageunitspervalue int 32 Addressable units (au) per value
in memory. May be less than one
when you use bit packing

wordsize int 32 Number of bits in a word for the
processor

binarypt int 0 Location of the binary point for
fractional data types

Property Name Property Type Default Value Description
2-21

2 Objects for MATLAB Link Software

2-2
Methods of Bitfield Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself.

offset int 0 Starting point of the bitfield in
relation to bit 0

length int 0 Number of bits in the bitfield

Property Name Property Type Default Value Description

Name Overloaded? Description

cast Yes Copies an object and change the
data type for a value at the
same time

convert No Changes the data type for a
value

copy Yes Copies an existing object by
creating a new pointer to the
object

display Yes Displays the properties of the
object

read Yes Returns the contents of the
memory location specified by
the symbol

write Yes Writes one or more values to the
memory location
2

Enum Objects—Their Methods and Properties
Enum Objects—Their Methods and Properties
When you create an object that accesses an enumerated symbol in your source
code, the object constructor createobj returns an enum object. createobj uses
the information in your source code to set the properties of the object
appropriately to match the code. Within the properties and their values you
find all the information about the symbol, so that MATLAB understands how
to handle the symbol in your MATLAB workspace.

To add to the properties of the enum class, enum objects inherit properties and
methods from the numeric and memoryobj classes.

Properties of Enum Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property Type Default Value Description

name string None Name of the embedded symbol in
the symbol table

arrayorder {col-major,row
-major}

row-major Ordering of values when moving
data from linear memory storage
to N-D arrays in MATLAB

address mxArray [0 0] Memory address of the symbol,
in [Offset Page] format

bitsperstorageunit double 8 Bits per smallest addressable
unit in the signal processor

numberofstorageunits double 1 Number of memory units needed
to represent the object

link MATLAB handle None Object handle that identifies the
object
2-23

2 Objects for MATLAB Link Software

2-2
Methods of Enum Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not

timeout double 10 seconds Time-out period for link methods

endianness {little, big} little Specifies whether the data is
stored as little endian or big
endian data

postpad int 0 Number of bits of padding added
at the end of the memory buffer.
Added bits are ignored in final
numeric values.

prepad int 0 Number of bits of padding added
at the beginning of the memory
buffer. Added bits are ignored in
final numeric values

represent {signed,
unsigned,
float, fract,
ufract}

signed Reports the data type of the
values

size mxArray 1 Specifies the size of the array
created in MATLAB from the
data received from memory

storageunitspervalue int 32 Addressable units (au) per value
in memory. May be less than one
when you use bit packing

label mxArray N/A Lists the enumerated labels for
the object

value mxArray 0 Contains a vector of the
enumerated type

Property Name Property Type Default Value Description
4

Enum Objects—Their Methods and Properties
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself.

Name Overloaded? Description

display Yes Displays the properties of the
object

equivalent No Returns the equivalent string or
numeric value based on the
input argument
2-25

2 Objects for MATLAB Link Software

2-2
Pointer Objects—Their Methods and Properties
When you create an object that accesses a pointer symbol in your source code,
the object constructor createobj returns a pointer object. createobj uses the
information in your source code to set the properties of the object appropriately
to match the code. Within the properties and their values you find all the
information about the symbol, so that MATLAB understands how to handle the
symbol in your MATLAB workspace.

To add to the properties of the pointer class, pointer objects inherit properties
and methods from the numeric and memory classes.

Properties of Pointer Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property
Type

Default Value Description

arrayorder {'col-major'
'row-major'}

row-major Describes the ordering of the data
moved from linear memory storage
to n-dimensional arrays

binarypt int 0 Locates binary point needed to
interpret the value

endianness character little Specifies whether the data is
stored as little endian or big endian
data

postpad int 0 Number of bits of padding added at
the end of the memory buffer.
Added bits are ignored in final
numeric values
6

Pointer Objects—Their Methods and Properties
Methods of Pointer Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not

prepad int 0 Number of bits of padding added at
the beginning of the memory
buffer. Added bits are ignored in
final numeric values

represent {signed,
unsigned,
float,
fract,
ufract}

signed Reports the representation of the
values in the object

size mxArray 1 Specifies the size of the array
created in MATLAB from the data
received from memory

storageunitspervalue double 1 Addressable units per memory
value in memory on the DSP

name mxArray None Name of the embedded symbol in
the symbol table

address mxArray [0 0] Memory address of the symbol, in
[Offset Page] format

bitsperstorageunit double 8 Bits per smallest addressable unit
in the signal processor

numberofstorageunits double 1 Number of memory units needed to
represent the object

wordsize int 0 Valid bits per value (read-only)

typestring string void Specifies the type of data the
pointer points to

Property Name
(Continued)

Property
Type

Default Value Description
2-27

2 Objects for MATLAB Link Software

2-2
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself.

Name Overloaded? Description

deref No Returns the data to which the
specified pointer points
8

String Objects—Their Methods and Properties
String Objects—Their Methods and Properties
When you create an object that accesses a string symbol in your source code,
the object constructor createobj returns a string object. createobj uses the
information in your source code to set the properties of the object appropriately
to match the code. Within the properties and their values you find all the
information about the symbol, so that MATLAB understands how to handle the
symbol in your MATLAB workspace.

To add to the properties of the string class, string objects inherit properties and
methods from the numeric and memory classes.

Properties of String Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property Type Default Value Description

name string None Name of the embedded symbol in
the symbol table

arrayorder {col-major,r
ow-major}

row-major Ordering of values when moving
data from linear memory storage
to N-D arrays in MATLAB

address mxArray [0 0] Memory address of the symbol, in
[Offset Page] format

bitsperstorageunit double 8 Bits per smallest addressable unit
in the signal processor

numberofstorageunits double 1 Number of units needed to
represent the object

link MATLAB
handle

None Object handle that identifies the
object
2-29

2 Objects for MATLAB Link Software

2-3
Methods of String Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not

timeout double 10 seconds Time-out period for link methods

endianness {little,
big}

little Specifies whether the data is
stored as little endian or big
endian data

postpad int 0 Number of bits of padding added at
the end of the memory buffer.
Added bits are ignored in final
numeric values

prepad int 0 Number of bits of padding added at
the beginning of the memory
buffer. Added bits are ignored in
final numeric values

represent {signed,
unsigned,
float,
fract,
ufract}

signed Reports the representation of the
values in the object

size mxArray 1 Specifies the size of the array
created in MATLAB from the data
received from memory

storageunitspervalue int 32 Addressable units (au) per value in
memory. May be less than one
when you use bit packing

wordsize int 0 Valid bits per value (read-only)

charconversion mxArray ASCII Conversion type of the characters
in the object

Property Name Property Type Default Value Description
0

String Objects—Their Methods and Properties
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself.

Name Overloaded? Description

equivalent Yes Returns the equivalent numeric value
for the input string

readnumeric Yes Returns the data in memory to MATLAB
as numeric equivalent of the values on
the target
2-31

2 Objects for MATLAB Link Software

2-3
Rnumeric Objects—Their Methods and Properties
When you create an object that accesses a numeric symbol stored in a register
in your source code, the object constructor createobj returns an rnumeric
object. createobj uses the information in your project to set the properties of
the object appropriately to match the code. Within the properties and their
values you find all the information about the symbol, so that MATLAB
understands how to handle the symbol in your MATLAB workspace.

To add to the properties of the rnumeric class, rnumeric objects inherit
properties and methods from the register class.

Classes that inherit from the registerobj base class always access data that
resides in registers on the target, not in memory locations.

Properties of Rnumeric Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property Type Default Value Description

name string None Name of the register symbol in the
symbol table

regname mxArray None Name of the register on the signal
processor

numberofstorageunits double 1 Number of register units needed to
represent the register object

link MATLAB
handle

None Object handle that identifies the
object

timeout double 10 seconds Time-out period for link methods

arrayorder {'col-major'
'row-major'}

row-major Describes the ordering of the data
moved from linear memory storage
to n-dimensional arrays
2

Rnumeric Objects—Their Methods and Properties
Methods of Rnumeric Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not

binarypt int 0 Locates binary point needed to
interpret fractional data types

postpad int 0 Number of bits of padding added at
the end of the memory buffer.
Added bits are ignored in final
numeric values

prepad int 0 Number of bits of padding added at
the beginning of the memory
buffer. Added bits are ignored in
final numeric values

represent {signed,
unsigned,
float,
fract,
ufract}

signed Reports the representation of the
values in the object, such as
numeric or string

size mxArray 1 Specifies the size of the array
created in MATLAB from the data
received from memory

storageunitspervalue double 1 Register units per register value in
memory on the DSP

bitsperstorageunit double 8 Bits per smallest register unit in
the signal processor

wordsize int 0 Valid bits per value (read-only)

Property Name Property Type Default Value Description
2-33

2 Objects for MATLAB Link Software

2-3
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself.

Name Overloaded? Description

cast No Changes the data type of the
input argument to another data
type

convert No Converts the current data type
to the specified data type

display Displays the properties of the
object

reshape No Reshapes the object in MATLAB

read Yes Returns the contents of the
register location specified by the
symbol

write Yes Writes one or more values to the
register location
4

Renum Objects—Their Methods and Properties
Renum Objects—Their Methods and Properties
When you create an object that accesses an enumerated symbol stored in a
register in your source code, the object constructor createobj returns an
renum object. createobj uses the information in your source code to set the
properties of the object appropriately to match the code. Within the properties
and their values you find all the information about the symbol, so that
MATLAB understands how to handle the symbol in your MATLAB workspace.

To add to the properties of the renum class, renum objects inherit properties
and methods from the rnumeric and register classes.

Classes that inherit from the registerobj base class always access data that
resides in registers on the target, not in memory locations.

Properties of Renum Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property Type Default Value Description

name string None Name of the register symbol in the
symbol table

regname mxArray None Name of the register on the signal
processor

numberofstorageunits double 1 Number of register units needed to
represent the register object

link MATLAB
handle

None Object handle that identifies the
object

timeout double 10 seconds Time-out period for link methods

arrayorder {'col-major'
'row-major'}

row-major Describes the ordering of the data
moved from linear memory storage
to n-dimensional arrays
2-35

2 Objects for MATLAB Link Software

2-3
binarypt int 0 Locates binary point needed to
interpret fractional data types

postpad int 0 Number of bits of padding added at
the end of the memory buffer.
Added bits are ignored in final
numeric values

prepad int 0 Number of bits of padding added at
the beginning of the memory
buffer. Added bits are ignored in
final numeric values

represent {signed,
unsigned,
float,
fract,
ufract}

signed Reports the representation of the
values in the object, such as
numeric or string

size mxArray 1 Specifies the size of the array
created in MATLAB from the data
received from memory

storageunitspervalue double 1 Register units per register value in
memory on the DSP

bitsperstorageunit double 8 Bits per smallest register unit in
the signal processor

wordsize int 0 Valid bits per value (read-only)

label mxArray N/A Lists the enumerated labels for the
object

value mxArray 0 Contains a vector of the
enumerated type

Property Name Property Type Default Value Description
6

Renum Objects—Their Methods and Properties
binarypt int 0 Locates binary point needed to
interpret fractional data types

postpad int 0 Number of bits of padding added at
the end of the memory buffer.
Added bits are ignored in final
numeric values

prepad int 0 Number of bits of padding added at
the beginning of the memory
buffer. Added bits are ignored in
final numeric values

represent {signed,
unsigned,
float,
fract,
ufract}

signed Reports the representation of the
values in the object, such as
numeric or string

size mxArray 1 Specifies the size of the array
created in MATLAB from the data
received from memory

storageunitspervalue double 1 Register units per register value in
memory on the DSP

bitsperstorageunit double 8 Bits per smallest register unit in
the signal processor

wordsize int 0 Valid bits per value (read-only)

label mxArray N/A Lists the enumerated labels for the
object

value mxArray 0 Contains a vector of the
enumerated type

Property Name Property Type Default Value Description
2-37

2 Objects for MATLAB Link Software

2-3
Methods of Renum Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself.

Name Overloaded? Description

equivalent No Returns the equivalent string or
numeric

read Yes Returns the data from the
register on the target

write Yes Writes one or more values to the
register location
8

Rpointer Objects—Their Methods and Properties
Rpointer Objects—Their Methods and Properties
When you create an object that accesses a pointer symbol stored in a register
in your source code, the object constructor createobj returns an rpointer
object. createobj uses the information in your source code to set the properties
of the object appropriately to match the code. Within the properties and their
values you find all the information about the symbol, so that MATLAB
understands how to handle the symbol in your MATLAB workspace.

To add to the properties of the rpointer class, rpointer objects inherit properties
and methods from the rnumeric and register classes.

Classes that inherit from the registerobj base class always access data that
resides in registers on the target, not in memory locations.

Properties of Rpointer Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property Type Default Value Description

name string None Name of the register symbol in the
symbol table

regname mxArray None Name of the register on the signal
processor

numberofstorageunits double 1 Number of register units needed to
represent the register object

link MATLAB
handle

None Object handle that identifies the
object

timeout double 10 seconds Time-out period for link methods

arrayorder {'col-major'
'row-major'}

row-major Describes the ordering of the data
moved from linear memory storage
to n-dimensional arrays
2-39

2 Objects for MATLAB Link Software

2-4
Methods of Rpointer Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not

binarypt int 0 Locates binary point needed to
interpret fractional data types

postpad int 0 Number of bits of padding added at
the end of the memory buffer.
Added bits are ignored in final
numeric values

prepad int 0 Number of bits of padding added at
the beginning of the memory
buffer. Added bits are ignored in
final numeric values

represent {signed,
unsigned,
float,
fract,
ufract}

signed Reports the representation of the
values in the object, such as
numeric or string

size mxArray 1 Specifies the size of the array
created in MATLAB from the data
received from memory

storageunitspervalue double 1 Register units per register value in
memory on the DSP

bitsperstorageunit double 8 Bits per smallest register unit in
the signal processor

wordsize int 0 Valid bits per value (read-only)

typestring string void Specifies the type of data the
pointer points to

Property Name Property Type Default Value Description
0

Rpointer Objects—Their Methods and Properties
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself.

Name Overloaded? Description

deref No Returns the data to which the
specified pointer points

read Yes Returns the contents of the
register location specified by the
symbol

write Yes Writes one or more values to the
register location
2-41

2 Objects for MATLAB Link Software

2-4
Rstring Objects—Their Methods and Properties
When you create an object that accesses a string symbol stored in a register in
your source code, the object constructor createobj returns an rstring object.
createobj uses the information in your source code to set the properties of the
object appropriately to match the code. Within the properties and their values
you find all the information about the symbol, so that MATLAB understands
how to handle the symbol in your MATLAB workspace.

To add to the properties of the rstring class, rstring objects inherit properties
and methods from the rnumeric and register classes.

Classes that inherit from the registerobj base class always access data that
resides in registers on the target, not in memory locations.

Properties of Rstring Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property Type Default Value Description

name string None Name of the register symbol in the
symbol table

regname mxArray None Name of the register on the signal
processor

numberofstorageunits double 1 Number of register units needed
to represent the register object

link MATLAB
handle

None Object handle that identifies the
object

timeout double 10 seconds Time-out period for link methods

arrayorder {'col-major'
'row-major'}

row-major Describes the ordering of the data
moved from linear memory
storage to n-dimensional arrays
2

Rstring Objects—Their Methods and Properties
Methods of Rstring Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not

binarypt int 0 Locates binary point needed to
interpret fractional data types

postpad int 0 Number of bits of padding added
at the end of the memory buffer.
Added bits are ignored in final
numeric values

prepad int 0 Number of bits of padding added
at the beginning of the memory
buffer. Added bits are ignored in
final numeric values

represent {signed,
unsigned,
float,
fract,
ufract}

signed Reports the representation of the
values in the object, such as
numeric or string

size mxArray 1 Specifies the size of the array
created in MATLAB from the data
received from memory

storageunitspervalue double 1 Register units per register value
in memory on the DSP

bitsperstorageunit double 8 Bits per smallest register unit in
the signal processor

wordsize int 0 Valid bits per value (read-only)

charconversion mxArray ASCII Conversion character set applied
for the characters in the referent
string

Property Name Property Type Default Value Description
2-43

2 Objects for MATLAB Link Software

2-4
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself.

Name Overloaded? Description

equivalent Yes Returns the equivalent numeric
value for the input string

readnumeric Yes Returns the data in memory as a
numeric array in MATLAB

write Yes Writes data to memory on the
target

writebin Yes Write datas to memory on the
target as binary data—0s and 1s
4

Function Objects—Their Methods and Properties
Function Objects—Their Methods and Properties
When you create an object that accesses a function declared in your source
code, or a library function in your project, the object constructor createobj
returns a function object. createobj uses the information in your source code
to set the properties of the object appropriately to match the code. Within the
properties and their values, you find all the information about the function, so
that MATLAB understands how to handle the function in your MATLAB
workspace and how to run the function on your target.

Unlike memory and register objects, function objects do not inherit properties
from a parent class.

Properties of Function Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property Type Default Value Description

name string None Name of the register symbol in the
symbol table

filename string None Reports the name of the file that
contains the function

address mxArray 0 Returns the starting memory address
for the function

type string ASCII Specifies the function return type

savedregs mxArray ASCII Lists the names of the processor
registers that are saved during
processing. Contents of saved registers
are preserved after you run a function
or program
2-45

2 Objects for MATLAB Link Software

2-4
Methods of Function Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself

variables mxArray ASCII Lists the names of variables in the
function

inputnames mxArray ASCII Lists the name of the input arguments
for the function

inputvars MATLAB handle None Handles to the objects that access each
input argument to the function.
Created when you create the function
object

outputvar MATLAB handle None Handles to the object that accesses the
output argument from the function.
Created when you create the function
object

link MATLAB handle None Identifies the name of the link object
you used to create the associated
embedded object

timeout double 10 s Specifies how long MATLAB waits for
calls to the function to complete their
work

Property Name Property Type Default Value Description

Name Overloaded? Description

addregister No Adds registers to the saved
register list

assignreturnstorage No Assigns a storage location for
the return value from a function
6

Function Objects—Their Methods and Properties
copy Yes Makes a copy of the function
object

getinput No Gets information about one or
more input arguments for a
function

getoutput No Gets information about the
output argument for a function

declare No Provides a function declaration
to MATLAB

deleteregister No Removes a register you added
to the saved register list

display Yes Returns the properties of the
function

execute No Runs a function or program

goto No Positions the cursor in CCS IDE
to the start of the specified
function. This method does not
initialize the function

list Yes Returns information about one
or more variables in your
function

read Yes Reads a value from memory on
the processor

resume Yes Restarts execution of a paused
or stopped process

run Yes Runs a program or function.
Similar to execute

Name Overloaded? Description
2-47

2 Objects for MATLAB Link Software

2-4
write Yes Write to the processor memory

cleanup No Restore CCS to the state it was
in before you ran a function.
Restores the register contents
to their previous state as well

Name Overloaded? Description
8

Structure Objects—Their Methods and Properties
Structure Objects—Their Methods and Properties
When you create an object that accesses a structure symbol declared in your
source code, the object constructor createobj returns a structure object.
createobj uses the information in your source code to set the properties of the
object appropriately to match the code. Within the properties and their values
you find all the information about the symbol, so that MATLAB understands
how to handle the symbol in your MATLAB workspace.

Like memory and register class objects, structure objects do not inherit
properties from a parent class.

Properties of Structure Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property
Type

Default Value Description

name string None Name of the C or assembly function

filename mxArray None Name of the file that contains the
function

address mxArray None Address of the function

arrayorder {col-major,
row-major}

row-major Ordering of values when moving
data from linear memory storage to
N-D arrays in MATLAB

member cell array None Object that contains a list of the
structure members

membname cell array None Object that contains the names of
the members of the structure

storageunitspervalue double 1 Memory units per value in memory
on the DSP
2-49

2 Objects for MATLAB Link Software

2-5
Methods of Structure Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself.

numberofstorageunits double 1 Number of memory units needed to
represent the object

memboffset int 0 Offset of the member from the
starting address of the structure

size mxArray 1 Specifies the size of the array
created in MATLAB from the data
received from memory

Property Name
(Continued)

Property
Type

Default Value Description

Name Overloaded? Description

getmember No Returns an object that accesses
one member of a structure

copy Yes Returns a copy of the object

display Yes Returns information about the
object

read Yes Reads a structure from the
symbol table

write Yes Writes changes or values to the
structure in memory
0

Type Objects—Their Methods and Properties
Type Objects—Their Methods and Properties
When you create an object that accesses a typedef declared in your source code,
the object constructor createobj returns a type object. createobj uses the
information in your source code to set the properties of the object appropriately
to match the code. Within the properties and their values, you find all the
information about the declaration, so that MATLAB understands how to
handle the typedef in your MATLAB workspace and how to read and write the
typedef on your target.

Like memoryobj and registerobj class objects, type class objects do not inherit
properties from a parent class. Unlike the other objects in MATLAB Link for
Code Composer Studio, type objects only exist as members of ccsdsp objects.
You cannot directly create a type object using createobj. When you delete the
ccsdsp object, you delete the type object as well. This relationship is called
composition in the standard object modeling language (UML). Instead, when
you call createobj, the resulting object includes by composition a type object,
with the object properties set to their default values.

Properties of Type Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself. For
this reason, many objects in MATLAB Link for Code Composer Studio share
common properties; as you use the objects you will become familiar with the
common and special properties for each.

Property Name Property
Type

Default Value Description

typelist cell array None List of the typedef equivalents in the
object. This list relates the typedef
name to its equivalent data type,
either a native data type or a custom
type definition. Equivalent types
follow the order of the names in
typename
2-51

2 Objects for MATLAB Link Software

2-5
Methods of Type Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do not
appear in all objects; listing them here indicates that the object does not inherit
these methods but provides them itself.

typename string None Names of the typedef entries in the
object

timeout integer 30 s Local time-out value applied to type
class operations

Property Name
(Continued)

Property
Type

Default Value Description

Name Overloaded? Description

add No Adds a new type definition to the
type object in MATLAB

clear Yes Removes an existing type
declaration from your type object

display Yes Displays the properties of a type
object

gettypeinfo No Returns information about a type
declaration in your type object
2

Constructing Objects That Access Bitfields
Constructing Objects That Access Bitfields
Since bitfield objects do not stand by themselves, but only as parts of struct
objects, you work with bitfields by starting with struct object. You create an
object that accesses the structure the uses the bitfield. With the struct object
now in your workspace, use getmember to create objects that access the
elements of the structure. For example, in the next code offerings, we create a
structure that contains a bitfield, then access the bitfield elements to be able to
read and write to them.

Here is the target structure definition

struct {
int b_2 : 1;
unsigned int b_22 : 22;

 unsigned int b_10 : 3;
} bit_field = { 0, 689, 4};

create the struct object

bit_field=createobj(cc,'bit_field')

Use bit_field and getmember to construct objects for the components in the bit
field.

b_2=getmember(bit_field,'b_2)

BITFIELD Object stored in memory:
 Symbol name : b_2
 Address : [2147501596 0]
 Wordsize : 32 bits
 Address units per value : 4 au
 Representation : signed
 Size : [1]
 Total address units : 4 au
 Array ordering : row-major
 Endianness : little
 Length (bits) : 1
 Offset (bits) : 0

b_22=bfield.member.b_22 % Alternate syntax for accessing members
2-53

2 Objects for MATLAB Link Software

2-5
BITFIELD Object stored in memory:
 Symbol name : b_22
 Address : [2147501596 0]
 Wordsize : 32 bits
 Address units per value : 4 au
 Representation : unsigned
 Size : [1]
 Total address units : 4 au
 Array ordering : row-major
 Endianness : little
 Length (bits) : 22
 Offset (bits) : 1
4

Creating Function Objects
Creating Function Objects
Like the other objects in MATLAB Link for Code Composer Studio, you use
createobj to construct objects that access the functions in your program and
project in CCS. However, unlike many of the other objects, constructing
function objects has some peculiarities with which you must be familiar.

The MATLAB Link for Code Composer Studio function objects support two
kinds of program functions:

• Functions that you write in ANSI C

• Functions that you write in Assembly but that have C function prototypes,
such as library functions

A number of classes of functions that are allowed in your program are not
supported by function objects:

• Assembly language functions that do not have C prototypes

• Functions where the number of input arguments changes

• Functions written in non-ANSI C language

For the unsupported function types, you cannot create function objects that
access them and you cannot work with them with MATLAB Link for Code
Composer Studio.

In general, MATLAB Link for Code Composer Studio provides three related
ways to create function objects, all of which use createobj as a starting point.

1 Use createobj with the function name in the syntax. For example, to create
an object that accesses func_name, use

ff = createobj(cc,func_name)

which creates the handle ff that accesses func_name. This syntax tells
MATLAB to try to locate the function declaration string in your project.
When it finds the required declaration, createobj generates the objects and
information, such as function object property values, that enable MATLAB
to run func_name. Note that searching your project for the function
2-55

2 Objects for MATLAB Link Software

2-5
declaration may take some time, depending on projects you have open in
CCS and the communications speed between your PC and the target.

If MATLAB cannot find the function declaration for func_name, one of the
next two approaches works to create the necessary function object.

Note An important note about creating function objects and createobj. Even
when MATLAB cannot find your specified function by name, it creates the
function object ff, although populated with default values for the properties.
Method 3 below takes advantage of this fact of object creation.

2 Pass the function declaration string in the calling syntax for createobj.
When you use this method, MATLAB skips the search for the function
prototype and creates the function object from your input string. Here is one
way to do it, using the createobj optional keywords function and funcdecl.

ff = createobj(cc,func_name,'function','funcdecl',declaration_string)

3 When the function object exists already, but it does not have full property
values associated with it, pass the function declaration string to the function
object with declare, and the keyword decl.

declare(ff,'decl','declaration_string')

When to Use declare to Provide the Function
Declaration
Some types of functions in your project require that you explicitly provide the
function declaration to MATLAB. In the following types of functions, MATLAB
cannot determine the function declaration from CCS:

• Functions that you write in assembly, but you provide C declaration string
for them

• Functions in a CCS project that you compile without enabling symbolic
debugging

• Projects where you load the COFF file but not the project

• Instances where something in your function declaration, such as a
non-ANSI C keyword, causes createobj to fail to read the declaration fully
6

Creating Function Objects
Using declare to send the declaration string corrects each of the above
situations so you can use MATLAB to run the function on your target.

To help you see what this means, here is one example of using declare. Note
that you cannot run this example code.

In your project:

#define NumDefinedQualifier extern
NumDefinedQualifier void foo(void)

In MATLAB:

ff = createobj(ff,'foo')

generates a warning that MATLAB could not read the function declaration for
foo. So try either of the following to overcome the error:

declare(ff,'decl','void foo(void)'

or:

declare(ff,'decl','extern void foo(void)')

Differences Between Objects for Library Functions
and C Functions
To run functions on your target, MATLAB needs a range of information about
the function you are running. Function objects in MATLAB Link for Code
Composer Studio provide the information MATLAB needs. When you create an
object that accesses a function, the properties of the new function object
contain all the information MATLAB requires to be able to run the function.
Unfortunately, this is not true for all functions—function objects that access
library functions do not contain the same function prototype that C function
objects contain when you create them. When you try to create a function object
to access a library function, MATLAB returns a warning message that it
created the object you requested but could not set all the properties of the
object.

Library Functions
Library functions are functions that are not compiled when you build your
project. They represent precompiled functions that you call from your C source
code and the compiler does not know about the functions beyond their
2-57

2 Objects for MATLAB Link Software

2-5
locations. Examples of library functions include those functions in the C
standard library, or functions in other standard libraries. Another example of
library functions are functions written in assembly but accompanied by C
prototypes (the TI run-time libraries fall into this category). In CCS IDE, you
find library functions listed in the Libraries directory in your project directory
tree.

Functions written in non-ANSI C or functions written in another language like
assembly that do not have C prototypes; or functions that have variable
numbers of input arguments, do not work with the function objects in
MATLAB Link for Code Composer Studio.

Because library functions are not part of the compile and build process for
projects in CCS, the information about library function declarations, or
prototypes, is not available to MATLAB from the symbol table in CCS. To
overcome this problem, MATLAB Link for Code Composer Studio includes
a method named declare that lets you provide the declaration for a library
function from the MATLAB command line. For more about using declare to
enter function prototype strings in to MATLAB, refer to the reference page for
declare, and to the tutorial about using functions in “Tutorial 2-1—Using
Function Objects and Hardware-in-the-Loop” on page 2-74.

Examples of Creating Function Objects
The following sections cover many situations you may encounter when you
create function objects:

• Run a C function.

• Run a library function.

• Run a function that includes a custom data type.

• Run code generated by Real-Time Workshop.

• Run a function that has input vectors.

Unless you have project code that supports the functions used here you cannot
run these examples. They are for instruction only.

These examples refer to four functions—sin_taylor, dotprod, adotprod, and
cdotprod. Here is the code for each one.

• Function sin_taylor
/*--*
8

Creating Function Objects
 * Taylor Series expansion of sin function - Fixed Point
 * Limitations: input range: -pi <x <pi;
 *
 * Input Datatype is:
 * Q2.13 (or MATLAB sfix16_En13), scale factor = 2^13
 * Output Datatype is:
 * Q1.14 (or MATLAB sfix16_En14), scale factor = 2^14
 *
 * Taylor Expansion of sin function (first 4 terms)
 * sin(x) =(approx) x[1 - (x^2/6)*[1 + (x^2/20)*[1 - (x^2/42)]]]

---/
#define SFIX32_EN26_VAL_1 67108864 // Integer equivalent of
1.0 in Q5.26
#define SFIX32_EN28_VAL_1 268435456 // Integer equivalent of
1.0 in Q3.28
#define SFIX32_EN30_VAL_1 1073741824 // Integer equivalent of
1.0 in Q1.30

/* Global buffers */
short ibuf[63];
short obuf[63];

short sin_taylor(short x)
{

// Define 16/32 bit local variables depending on processor
#if INT_MAX == 0x7FFFFFFF
int acc,a1,a2,a3,xpow;
#elif LONG_MAX == 0x7FFFFFFF
long acc,a1,a2,a3,xpow;
#endif

xpow = x*x; // x^2 sfix32_En26

 a1 = xpow/42; // x^2/42 sfix32_En26
 a2 = xpow/20; // x^2/20 sfix32_En26
 a3 = xpow/6; // x^2/6 sfix32_En26
2-59

2 Objects for MATLAB Link Software

2-6
 acc = SFIX32_EN26_VAL_1 - a1;
 acc >>= 11;
 acc *= (a2>>11);

 acc = SFIX32_EN30_VAL_1 - acc;
 acc >>= 14;
 acc *= (a3>>14);

 acc = SFIX32_EN28_VAL_1 - acc;
 acc >>= 11;
 acc *= x;

 return (acc>>16);
}

• Function dotprod is a library function and has only a prototype; no source
code.
int dotprod (short *x, short *y, int nx);

• Function adotprod
/* Global buffers */
short a[] = {1, 2, 3,4,5};
short b[] = {1, 2, 3, 4,5};

int adotprod(short x[4], short y[4])
{

int sum;
int i;
sum = 0;
for(i=0;i<4;i++) {

sum += (x[i]*y[i]);
}
return sum;

}

• Function cdotprod

/* Global buffers */
short a[] = {1, 2, 3,4,5};
0

Creating Function Objects
short b[] = {1, 2, 3, 4,5};

/* Typedef info */
typedef int INT;
typedef short SHORT;

/*
 Function cdotprod returns the dot product of
 two integer arrays (datatype=short).
 Inputs:
 x, y - pointer to an array of shorts
 n - size of array pointed to by x and y
*/
INT cdotprod(SHORT x[], SHORT y[], INT n)
{

int sum;
int i;
sum = 0;
for(i=0;i<n;i++) {

sum += (x[i]*y[i]);
}
return sum;

}

Run a Standard C Function
In this example, we run function sin_taylor that computes the value for the
sine of an input value. This function accepts one input, x (using data type
short), and returns a short data type result.

To get the correct values, the input data must be converted to Q16.13 format
before passing to the function. After execution, the output value must be
converted from Q16.14 to decimal representation.

Create a ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main—ensures that global variables are initialized:
2-61

2 Objects for MATLAB Link Software

2-6
run(cc,'main',1000);

Create a function object for sin_taylor:

ff = createobj(cc,'sin_taylor')
inputdata = 0.5; % input value to be used

Set value of input x:

x_obj = getinput(ff,'x');
write(x_obj,inputdata* 2^13);

Run the function:

outputdata = run(ff);

Run a Library Function
For a library function, you pass the declaration string explicitly through
declare.

This example runs the function dotprod that computes the dot product of two
arrays. This function requires three inputs:

• x—a pointer to a vector of short data type values

• y—a pointer to a vector of short data type values

• n—the size of x and y vectors

We use the global variable a for input x, b for input y, and 4 for input nx (since
a and b are four element vectors). The function returns a short.

Create a ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main to ensure that you initialize the global variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for 'x'
b_addr = address(cc,'b'); % Global buffer for 'y'

Create the function object for the library function dotprod:
2

Creating Function Objects
ff = createobj(cc,'dotprod')

The previous step yields an incomplete function object ff because library
functions always require that you provide the function declaration explicitly,
as follows:

declare(ff,'decl','int dotprod (short *x, short *y, int nx)')

Set the value for the input parameter x:

x_obj = getinput(ff,'x');
write(x_obj,a_addr(1));
xRef_obj = deref(x_obj);
reshape(xRef_obj,4);
x_inputval = read(xRef_obj) % Verify 'y' referent value

Set the value for y, the second input parameter:

y_obj = getinput(ff,'y');
write(y_obj,b_addr(1));
yRef_obj = deref(y_obj);
reshape(yRef_obj,4);
y_inputval = read(yRef_obj) % Verify 'y' referent value

Pass the value for nx to the function:

nx_obj = getinput(ff,'nx');
write(nx_obj,4);
nx_inputval = read(nx_obj) % Verify 'nx' value

Now run the function:

run(ff);

Run a Function That Has a Custom Type Definition in the Prototype
Having custom data types in your function declaration can cause problems
when you run the functions from MATLAB.

Case 1—Running a Function That Has a Typedef in the Function Prototype
This example runs the function cdotprod that computes the dot product of two
matrices. This function requires three inputs:

• x—a pointer to a vector of short data type values
2-63

2 Objects for MATLAB Link Software

2-6
• y—a pointer to a vector of short data type values

• n—the size of x and y vectors

Both n and the return argument are defined as data type INT, a custom data
type defined in the source code.

We use the global variable a for input x, b for input y, and 4 for input n (since
a and b are four-element vectors). The function returns a short.

Create a ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main to ensure that CCS initializes all of the global variables
before you create your function object for cdotprod:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for x
b_addr = address(cc,'b'); % Global buffer for y

Create a function object for the library function cdotprod:

ff = createobj(cc,'cdotprod')

The previous call to createobj yields an incomplete function object because the
function declaration includes an unresolved typedef—the type INT. To resolve
this error, add the custom data type INT to the type object and use declare to
pass the function declaration to MATLAB:

add(cc.type,'INT','int'); % Earlier warning that data type
% INT cannot be resolved

declare(ff,'decl','INT cdotprod (short x[], short y[], INT n)')

Set values for the inputs x, y, and n, and run the function, passing the input
values in the run syntax. Input x is a pointer so pass an address. Input y is a
pointer as well, so pass another address. Input n is an integer that specifies the
size of x and y:

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);
4

Creating Function Objects
Case 2—A Second Approach to Solving the Typedef Problem
We now run the function cdotprod, which computes the dot product of two
matrices. This function accepts three inputs:

• x—a pointer to a vector of short data type values

• y—a pointer to a vector of short data type values

• n—the size of x and y vectors

We are going to use the global variable a for input x, b for input y, and 4 for
input n (since a and b are four element vectors). The function returns a short.

Create ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main to ensure that CCS initializes all of the global variables
before you create your function object for cdotprod:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for 'x'
b_addr = address(cc,'b'); % Global buffer for 'y'

Create function object for library function cdotprod:

ff = createobj(cc,'cdotprod')

Again createobj generates an incomplete function object because of the
unresolved data type INT in the function declaration. In this case, fix the
problem by adding the custom data type INT to the type object and create the
object ff again, instead of using declare to pass the function declaration to
MATLAB:

add(cc.type,'INT','int'); % Warning only mentioned that type INT
% cannot be resolved

ff = createobj(cc,'cdotprod')

Set values for the inputs x, y, and n, and run the function, passing the input
values in the run syntax. Input x is a pointer so pass an address. Input y is a
pointer as well, so pass another address. Input n is an integer that specifies the
size of x and y:
2-65

2 Objects for MATLAB Link Software

2-6
run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

Case 3—A Third Approach to Solving the Typedef Problem
Once more we are going to run the function cdotprod which computes the dot
product of two matrices. This function accepts three inputs:

• x—a pointer to a vector of shorts

• y—a pointer to a vector of shorts

• n—the size of x and y vectors

We are going to use the global variable a for input x, b for input y, and 4 for
input n (since a and b are four element vectors). cdotprod returns a short.

Create ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % wait for hardware reset to complete before proceeding

Run to start of main, ensuring that CCS initializes all of the global variables
before you create the function object that accesses cdotprod:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for x
b_addr = address(cc,'b'); % Global buffer for y

Create a function object for the library function cdotprod:

ff = createobj(cc,'cdotprod')

This attempt to create a new function object ff results in an incomplete
function object because MATLAB could not resolve the data type INT in the
function declaration. In this approach to overcoming the unresolved type error,
use declare to pass to MATLAB a version of the cdotprod function declaration
that does not include the offending type INT—you do not need to add the
typedef to the type object:

declare(ff,'decl','int cdotprod (short x[], short y[], short n)')

Notice that the data types for the return argument and for n now specify int,
Set values for the inputs x, y, and n, and run the function, passing the input
values in the run syntax. Input x is a pointer so pass an address. Input y is a
6

Creating Function Objects
pointer as well, so pass another address. Input n is an integer that specifies the
size of x and y:

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

Run a Function Generated by Real-Time Workshop
We run the function 'mwdsp_fir_df_dd' which applies a filter to a noisy input
signal. This function accepts nine input parameters and returns the filtered
signal in the input argument y.

Create a ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % Wait for hardware reset to finish before proceeding

Now run the Real-Time Workshop generated code from the beginning to
MdlOutputs. You run from program start until MdlOutputs to ensure that all of
the code configuration processes get done—the CCS initializes all of the
variables in program. In the case of generated code, running to main is not
sufficient to ensure that all the variable get initialized:

run(cc,'runtofunc',MdlOutputs);

After running to MdlOutputs, you create the function object—pass the
function declaration to avoid MATLAB returning an error when you create the
function object. Due to the complexity of this function declaration, we have
assigned the string to a variable decl. We use the variable in the createobj
syntax:

decl = ['MWDSP_IDECL void MWDSP_FIR_DF_DD(const real_T *u,...
real_T *y, real_T * const mem_base,int_T *mem_offset,...
const int_T numDelays, const int_T sampsPerChan,...
const int_T numChans, const real_T * const b,...
const boolean_T one_fpf)'];
ff = createobj(cc,'MWDSP_FIR_DF_DD','function','funcdecl',decl);

Examine the function declaration above. This declaration causes MATLAB to
fail to create the fully populated function object ff because of the MWDSP_IDECL
macro at the beginning of the string. MATLAB cannot recognize this string.
Since the information in MWDSP_IDECL is not relevant to creating the function
object, you can remove this from the declaration string:
2-67

2 Objects for MATLAB Link Software

2-6
decl = ['void MWDSP_FIR_DF_DD(const real_T *u,...
real_T *y, real_T * const mem_base,int_T *mem_offset,...
const int_T numDelays, const int_T sampsPerChan,...
const int_T numChans, const real_T * const b,...
const boolean_T one_fpf)'];
ff = createobj(cc,'MWDSP_FIR_DF_DD','function','funcdecl',decl);

Now function object ff has all the information MATLAB needs.

Note You may not always be able to remove offending entries in a declaration
string, as we did with the macro MWDSP_IDECL. Often you can try your
declaration and see if it works. If not, use add to include typedefs in the type
object when MATLAB complains about a data type, or try removing the
problem portion of the declaration string if the function does not require the
troublesome text.

With the function object in your MATLAB workspace, create objects for the
inputs to MWDSP_FIR_DF_DD:

Create an object for rtB:

rtBobj = createobj(cc,'rtB');

Get the relevant rtB member objects:

SumObj = getmember(rtBobj,'Sum');
% Store Output of MWDSP_FIR_DF_DD in FilObj
FilObj = getmember(rtBobj,'Digital_Lowpass_Fil');

Next, create an object for rtDWork

rtDWorkObj = createobj(cc,'rtDWork');

and again get the relevant member objects:

Fil_FILT_STATES = getmember(rtDWorkObj,...
'Digital_Lowpass_Fil_FILT_STATES');
DF_INDX = getmember(rtDWorkObj,...
'Digital_Lowpass_Fil_FILT_STATES');

Create one last object for filterCoeffs:
8

Creating Function Objects
filterCoeffsObj = createobj(cc,'filterCoeffs');

To run the function, you need to provide the input values:

u = SumObj.address(1); % Input 1
y = FilObj.address(1); % Input 2
mem_base = Fil_FILT_STATES.address(1); % Input 3
mem_offset = DF_INDX.address(1); % Input 4
numDelays = 65; % Input 5
sampsPerChan = 256; % Input 6
numChans = 1; % Input 7
b = filterCoeffsObj.address(1); % Input 8
one_fpf = 1; % Input 9

Run the function, providing the input argument values in input value/input
name pairs, such as 3, membase and 6, sampPerChan:

run(ff,1,u,2,y,3,mem_base,4,mem_offset,5,numDelays,6,...
sampsPerChan,7,numChans,8,b,9,one_fpf)

Run a Function That Has Vector Inputs
This example shows how to run a function that accepts vector inputs.

We are going to run the function adotprod that computes the dot product of two
matrices. adotprod accepts two inputs:

• x—a four-element vector of short data type values

• y—a four-element vector of short data type values

The compiler converts the vector inputs into pointers to the vectors. We use the
global variable a for input x and b for input y. The function returns a short.

Create a ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % Wait for hardware reset to complete before proceeding

Run to the start of main to ensure that the global variables are initialized:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for 'x'
b_addr = address(cc,'b'); % Global buffer for 'y'
2-69

2 Objects for MATLAB Link Software

2-7
Create a function object ff to access adotprod:

ff = createobj(cc,'adotprod')

The function prototype for adotprod is

int adotprod(short x[4], short y[4])

adotprod requires as input two vector arrays x and y. The compiler requires
that you pass the addresses of x[4] and y[4], not the actual vectors x and y. So
instead of writing a data vector to input object x_obj and y_obj, you provide
the addresses of existing four element vectors:

display('INPUT VALUE ''x'':')
x_obj = getinput(ff,'x') % Note that this is a pointer to a vector

% of shorts
display('INPUT VALUE ''y'':')
y_obj = getinput(ff,'y') % note that this is a pointer to a vector

%of shorts

Set values of inputs x and y and run the function. Pass addresses to x and y
since both are pointers to other data:

write(x_obj,a_addr(1))
write(y_obj,b_addr(1))
x_inputval = read(reshape(deref(x_obj),4));
y_inputval = read(reshape(deref(y_obj),4));

In contrast to using pointers, using the following commands to write data to x
and y does not give you the expected result—the compiler cannot determine
where to put array [1:4]:

write(x_obj,[1:4]);
write(y_obj,[1:4]);

Now run your function:

run(ff);

The preceding examples present a few of the wide variety of functions and
conditions you may encounter when you construct function objects.
0

Creating Type Objects
Creating Type Objects
Type objects are unique among the objects in MATLAB Link for Code
Composer Studio because you cannot use createobj to create a type object
directly. Each time you create a ccsdsp object objectname, the new object
contains an empty type object, called objectname.type. You may note that this
looks very much like a property of the object objectname. It is, however, an
object: it has properties and methods that let you manipulate it from MATLAB.

When you create a type object, the object constructor add the following DSP
BIOS data types to the namelist property:

MATLAB Link for Code Composer Studio ignores certain CCS keywords when
you create type objects: interrupt, near, far, cregister, and volatile. These have
no meaning in the MATLAB workspace.

Working with Type Definitions in Projects
Type definitions (typedef) in your C source code present a special problem in
MATLAB Link for Code Composer Studio. While you can use any valid typedef
in the C programs you use in your project, MATLAB cannot read your custom
data types from the project in CCS without your help. You must supply each
typedef to MATLAB explicitly. There is no way for MATLAB to interpret
existing typedefs in your CCS project.

BIOS Data Type Equivalent C Data Type

Void void

Float float

Double double

Long long

Int int

Short short

Char char
2-71

2 Objects for MATLAB Link Software

2-7
In particular, until you tell MATLAB about the typedefs you use in your
project, you cannot use your typedefs when you create objects that access
functions whose prototypes include the typedefs as either input or output
arguments. Unless MATLAB recognizes your custom data types, you get an
error when you try to create the object or use declare to specify the function
prototype in MATLAB.

To tell MATLAB about your custom data types, you use add to add the type
definitions to a ccsdsp object that accesses your project in CCS.

To Add a Type Definition to an Existing ccsdsp Object
Adding a new type definition to a ccsdsp object entails using add to include the
new data type in the type object associated with your ccsdsp object. Follow this
example to see how you add a typedef to your type object. At the end of the
example, you use your new typedef in a function declaration.

1 Create a ccsdsp object:

mylink = ccsdsp;

2 Look at the properties of mylink, and the associated type object
mylink.type:

get(mylink)

rtdx: [1x1 rtdx]
 apiversion: [1 2]
 ccsappexe: 'D:\Applications\ti\cc\bin\'
 boardnum: 0
 procnum: 0
 type: [1x1 type]
 timeout: 10
 page: 0

get(mylink.type)
 typename: {'Void' 'Float' 'Double' 'Long' 'Int' 'Short' 'Char'}
 typelist: {1x7 cell}
2

Creating Type Objects
 timeout: 10

typename contains the default set of defined types. typelist contains seven
cell arrays of the form [1x1 struct]. You can verify this by issuing the
command

mylist.type.typelist

3 Now add a new type definition to the type object. For now add a typedef
mytype which uses the uint32 data type:

add(mylink.type,'mytype','uint32')

ans =

 type: 'uint32'
 size: 1
 uclass: 'numeric'

mylink.type.typename

ans =

 Columns 1 through 7

 'Void' 'Float' 'Double' 'Long' 'Int' 'Short' 'Char'

 Column 8

 'mytype'

typelist now contains eight 1-by-7 cell arrays, one additional one for the
new type mytype.

With MATLAB now informed about your custom data type mytype, you could
use the typedef in a function declaration, such as the following command where
ff is an object that accesses the function myfunction:

declare(ff,'decl','void myfunction(short x* int32 y* float z mytype m)')
2-73

2 Objects for MATLAB Link Software

2-7
Tutorial 2-1—Using Function Objects and
Hardware-in-the-Loop

The MATLAB Link for Code Composer Studio Development Tools provides a
connection between MATLAB and a digital signal processor in CCS. Using
objects with the links provides a mechanism for you to control and manipulate
a signal processing application using the computational power of MATLAB.
This can help you debug and develop your application. Another use for links
and objects is creating MATLAB scripts that you use to verify and test
algorithms by running the algorithms on your potential target during
development.

The MATLAB Link for Code Composer Studio provides hardware-in-the-loop
(HIL) functionality that enables you to verify your signal processing (DSP)
application implementation, within the context of a system design, by
simulating in MATLAB components that you did not implement on the digital
signal processor. You may want to verify your implementation of an FIR filter,
for example, on your processor while simulating your input data and
processing your output data in MATLAB. The performance of your closed-loop
system design may be assessed with the real-world constraints of your
hardware (the processor) and software (DSP implementation).

In this tutorial, you

• call digital signal processing functions

• get the function signature information, such as

- input argument names and types

- the function return type

- the starting address

• specify the values for each input argument

• run the function

• read the returned value(s)

all from MATLAB.

This tutorial assumes that you are relatively familiar with the MATLAB Link
for Code Composer Studio. If not, we suggest that you run csstutorial first to
give you a better understanding of what the MATLAB Link for Code Composer
4

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
Studio does. Run ccstutorial by typing ccstutorial at the command prompt
in MATLAB.

Before using the function object available with the MATLAB Link for Code
Composer Studio, you must select a digital signal processor to be your target
because your objects require a link to refer to. Selecting a processor is only
necessary for multiprocessor boards or multiple board configurations of CCS.
When you have only one board with a single processor, the link defaults to the
existing processor. For the links, the simulator counts as a board; if you have
both a board and a simulator that CCS recognizes, you must specify the target
explicitly.

Introducing the Tutorial
To get you started using function objects in your CCS IDE software, the
MATLAB Link for Code Composer Studio includes an example script
hiltutorial.m. As you follow along with this tutorial, you perform tasks that
step you through creating and using function objects in MATLAB and in your
projects:

1 Selecting your target.

2 Creating and querying links to CCS IDE.

3 Constructing and using various objects, such as numeric and string objects.

4 Creating and using function objects to access functions in your project.

5 Closing the links you opened to CCS IDE.

For this tutorial, you load and run a sample DSP application on a target
processor you select. To help you understand how objects work, the tutorial also
demonstrates writing to memory and reading from memory and registers.

Using the data manipulation functions gets a bit complicated. MATLAB
supports only double-precision values for calculations, but you can convert and
cast a range of data types to and from other data types. Seeing how the
functions work with many of the different objects can help you when you are
doing your work.

The tutorial covers the objects and methods listed below. The functions listed
first apply to CCS IDE independent of the links—you do not need a link to use
2-75

2 Objects for MATLAB Link Software

2-7
these functions. The functions and methods listed next require a CCS IDE link
in place before you can use the function syntax. Finally, the last set of entries
use the function object, using the methods that apply to working with function
objects in MATLAB and your project:

Global functions for CCS IDE—no link required

• ccsboardinfo—return information about the boards that CCS IDE
recognizes as installed on your PC.

• boardprocsel—select the board to target. Although you can use this
generally, the MATLAB Link for Code Composer Studio provides it as an
example of a user interface you can build and as a tool in the tutorial. We do
not recommend that you use this to select your target. Use ccsboardinfo
and ccsdsp to specify the target for your processing application

• ccsdsp—construct a link to CCS IDE. When you construct the link you
specify the target board and processor.

• clear—remove a specific link to CCS IDE or remove all existing links.

MATLAB Link for Code Composer Studio functions for working with
embedded objects—uses links

• cast—create a new object with a different data type (the represent
property) from an object in the MATLAB Link for Code Composer Studio.
Demonstrated with a numeric object.

• convert—change the represent property for an object from one data type to
another. Demonstrated with a numeric object.

• createobj—return an object in MATLAB that accesses embedded data.
Demonstrated with structure, string, and numeric objects.

• getmember—return an object that accesses a single field from a structure.
Demonstrated with a structure object.

• goto—position your cursor in CCS to the specified function in the project
code.

• list—return various information listings from CCS.

• read—read the information at the location accessed by an object into
MATLAB as numeric values. Demonstrated with numeric, string,
structure, and enum objects.
6

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
• readnumeric—return the numeric equivalent of data at the location.
accessed by an object. Demonstrated with an enum object.

• write—write to the location referenced by an object. Demonstrated with
numeric, string, structure, and enum objects.

MATLAB Link for Code Composer Studio functions for working with
embedded functions—uses function objects

• createobj—construct a function object that accesses a function in your
project in CCS.

• run—run a function on your target.

• copy—copy an existing function.

• declare—create a new function for your project from MATLAB. With this
method you create the function prototype, configuring the input and output
arguments, among other things.

• getinput—create the input arguments for your new function.

• getoutput—create the output arguments for your new function.

• assignreturnstorage—assign the location for storing the output from your
function.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB, click run ccstutorial. Running the
interactive tutorial in MATLAB puts you in an interactive mode where the
tutorial program provides prompts and text descriptions to which you respond
to move to the next portion of the lesson. The interactive tutorial covers the
same information provided by the following tutorial sections. If you wish to
view the tutorial M-file itself, click hiltutorial.m.

To Run the Hardware-in-the-Loop Tutorial
Running the tutorial consists of completing the following tasks that cover
setting up and running a project in CCS and interacting with the project from
MATLAB, as well as running functions from MATLAB on your target
hardware. In order, the tasks are
2-77

2 Objects for MATLAB Link Software

2-7
1 Select your target and establish the link between MATLAB and the target.
These operations, or some variant of them, are the first things you do to
work between MATLAB and CCS.

2 Load the tutorial project.

3 Initialize the embedded C variables, then construct and work with an
embedded object.

4 Use read, write, cast, and convert to manipulate a few variables. Within
this section you learn that read, write, cast, and convert behave
differently depending on the object you are using.

5 Construct a function object and run the function from MATLAB.

6 Exercise various methods that work with function objects, such as copy.

7 Construct other embedded objects and work with them, such as pointer
objects, enum objects, and type objects.

8 Close the tutorial and clean up the lingering objects, handles, and assorted
variables left over. Close CCS as well.

Note To run this tutorial, you must have either a C54xx or C6xxx processor
and board, or be using one of the C54 or C6x simulators in CCS. MATLAB
Link for Code Composer Studio does not support HIL or this tutorial on other
TI processors.

This is a rather long and complicated tutorial, because the embedded object
concepts are somewhat less straightforward and more numerous than the
ccsdsp or rtdx objects and concepts.

Stopping and Saving the Tutorial Program
If you stop in the middle of the tutorial, save your workspace so you can reload
the tutorial program (hiltut.board.out, where board is the numeric
designation of your target, such as 6x11 or 54xx) directly into CCS and continue
later. To save your workspace before you close MATLAB, select File->Save
Workspace As… from the MATLAB menu bar. To start the tutorial again,
8

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
reload the MATLAB workspace you stored and build and load the .out file to
start the tutorial.

Select Your Target and Load the Tutorial Project
You start by selecting your target DSP using a tool called boardprocsel. Then
you create a link between MATLAB and CCS. The link is represented by a
MATLAB object which you save in variable cc.

Note You use the digital signal processor that you select in the GUI for the
rest of this tutorial. For single processor installations of CCS, click OK to
continue. When you click OK, boardprocsel assigns the board and processor
identification information to the output arguments boardnum and procnum.

1 Start the board selection tool by entering

[board,processor] = boardprocsel

Follow the instructions on the dialog to select your target processor.

2 Use the board and processor variables to construct a ccsdsp object
named cc:

cc=ccsdsp(boardnum,board,procnum,processor)

Now that you have established the connection between MATLAB and your
target (the link), the target processor needs something to do. Your next step is
to create or load executable code for the target DSP with CCS.

For this tutorial, we created a CCS project file and board-specific executables
and included them with MATLAB. In this tutorial section, you load the
included executable directly; if the load fails (perhaps because you selected
a different board or processor target), you build the included project to compile
and generate the executable for your target.

The following functions locate the HIL tutorial project and load it into CCS.
Loading the project uses open, and directs CCS to load the project files or
a program file.
2-79

2 Objects for MATLAB Link Software

2-8
3 Start by gathering some information about the cc object you constructed.
Enter the following function calls to learn more about cc and to assign
MATLAB variables to the values of some properties of cc:

linkinfo = info(cc);
familycpu = linkinfo.subfamily;
revisioncpu = linkinfo.revfamily;
board = GetDemoProp(familycpu,revisioncpu,hiltutorial);

4 Now locate the project file for the tutorial and assign the path to a variable:

projfile = fullfile(matlabroot,toolbox,ccslink,ccsdemos,...
hiltutorial,board.hiltut.projname);

5 For convenience, assign the path to the project file to a variable (you use it
in a later step):

projpath = fileparts(projfile);

6 Now open the project file, using the link cc:

open(cc,projfile); % Open project file

7 To make your CCS working directory the same as your project directory,
use cd:

cd(cc,projpath); % Change working directory of CCS

Changing the working directory ensures that CCS finds all the project files
and stores changes in the same area as well.

8 When you created cc, the process opened CCS with the visibility set to 0—
not visible. You are going to need to see the source files and variables for the
tutorial, so set the visibility for CCS to 1:

visible(cc,1)

9 Finally, open the tutorial source file, activate it, and bring it to the
foreground in CCS:

open(cc,'hiltut.c' ,'text');
activate(cc,'hiltut.c','text');

Notice that the tutorial project is loaded in CCS. Examine the files in CCS
that compose this project. The main source file the project uses is hiltut.c
0

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
(the same for all targets), accompanied by a linker command file (*.cmd) and
a vector table source file (*.asm) that will be different depending on the DSP
family you are using. Also review the variables and functions in the file
hiltut.c—you manipulate them from MATLAB later in the tutorial.
Throughout the remaining tutorial, we call these variables and functions
embedded objects or variables. Before you build this project, try to load the
included executable program file hiltut.loadfile.

10 Use load to load the target executable file to the target by entering the
following command:

load(cc,board.hiltut.loadfile,30)

Possibly the load failed. This might happen when the load file was created
for a different target than the one you are using. When this happens, try
rebuilding the executable and then loading it before proceeding.

11 To create the executable file for the project from the source files, use build.
Before proceeding to build the file, you should set up the build options for the
build process, just as you would in CCS. From MATLAB, use setbuildopt
with cc to provide the build options and needed configuration:

cc.setbuildopt(compiler,board.hiltut.Cbuildopt);

12 To avoid overwriting the existing executable file, redirect the output
program file to a temporary directory on your system:

eval([cc.setbuildopt(Linker , -c -o 'tempdir...
board.hiltut.loadfile' -x)]);

In the eval syntax, notice that you use the dot notation to access the
members of the structure or object cc. Using this notation to access
properties of an object is common in MATLAB operations.

13 Everything is ready for you to build your project. Use the following command
to start the build:

build(cc,all,60);

Depending on your configuration, building a project can be slow and the
default time-out value may not be long enough. Therefore, an explicit 60
second time-out is supplied as an input argument with the build syntax.
Wait for the build operation to complete and press Enter before proceeding.
2-81

2 Objects for MATLAB Link Software

2-8
14 You’ve built the executable. Now load the program to your target with this
code. Note that you are loading the program from your temporary directory
and you provide an explicit time-out value of 40 s:

load(cc,['tempdir','board.hiltut.loadfile'],40)

Again, this load might fail for a number of reasons. One might be that your
target DSP needs different linker command (*.cmd) and vector table source
(*.asm) files. If so, attempt to rebuild the executable with the appropriate
files and then load it from the CCS IDE. After you load the executable
successfully, continue the tutorial.

15 To make sure the working directory is correct for the rest of the tutorial,
reset it to the project path from step 5:

cd(cc,projpath); % Restore CCS working directory

Initialize the Embedded C Variables and Use read
and write
Direct access to DSP memory is powerful, but for C programmers it can be more
convenient to manipulate memory in ways more like working with the
defined C variables. MATLAB Link for Code Composer Studio implements this
approach by using MATLAB objects as representations of embedded entities
(entries in the symbol table for your project).

This section of the tutorial starts by investigating data values in the program
and manipulating them using embedded objects. For that you apply the
method list with variable idat, which queries CCS for information about the
variable. idat is a global C variable in the tutorial program hiltut.c.

1 Enter the following code to ensure that the embedded C variables in your
project are initialized. In this tutorial, main contains all the variables
required for the project. Otherwise the methods for accessing variables
outside of main do not work because they are not initialized by running to
main:

run(cc,'main')

When you look at the project in CCS, you see that the program is running—
CCS shows the CPU as running.
2

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
2 Function list provides one way to gather information about the embedded
variables and functions in your project. Use the following list examples to
explore the tutorial program. In each example, you could assign the return
structure to an output argument by including an argument on the left side
of the list syntax:

list(cc,'function')
Warning: NAME 'ASM$' is an invalid ML structure fieldname. The
dollar ($) character is replaced by 'DOLLAR'.

ans =

 ASMDOLLAR: [1x1 struct]
 fir_filter: [1x1 struct]
 main: [1x1 struct]
 sin_taylor: [1x1 struct]
 sin_taylor_vect: [1x1 struct]

This syntax, with the function keyword, returns a structure that contains
the names of all the functions in your project:

list(cc,'variable')
ans =

 coeff: [1x1 struct]
 ddat: [1x1 struct]
 din: [1x1 struct]
 dout: [1x1 struct]
 ibuf: [1x1 struct]
 idat: [1x1 struct]
 myString: [1x1 struct]
 myStruct: [1x1 struct]
 nbuf: [1x1 struct]
 ncoeff: [1x1 struct]
 obuf: [1x1 struct]
 data: [1x1 struct]
 min: [1x1 struct]
 result: [1x1 struct]

Switching to the variable keyword returns a structure that contains the
names of all the variable defined in the tutoria:.
2-83

2 Objects for MATLAB Link Software

2-8
list(cc,'type')
ans =

 TAG_myStruct: [1x1 struct]
 TAG_myEnum: [1x1 struct]

The last keyword, type, returns all the data types defined in the program,
in a structure in your workspace.

3 To focus on just one variable, the next code example returns the information
about one variable, named idat. Again, the results come back in structure
form. In this case, you use an output argument to store the structure:

listI = list(cc,'variable','idat')
listI =

 idat: [1x1 struct]

idat is a global variable, as you see from the structure contents.

4 Now take a look at the idat element in structure listI:

listI.idat
ans =

 name: 'idat'
 isglobal: 0
 address: [17468 0]
 size: [2 3]
 bitsize: 16
 type: 'short'

list generates quite a lot of information about the embedded idat variable.
However, an even more useful method is createobj, which constructs
a MATLAB object to represent the C variable—in this case idat. The object you
construct using createobj acquires the properties of the C variable. Applying
the object returned by createobj, you can directly read the entire variable or
access individual elements of the variable, such as the elements of an array for
array variables.
4

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
To this point in the tutorial, you have applied all the methods to the original cc
object that you created with ccsdsp. The cc object represents communication
with a particular digital signal processor in CCS.

For the remainder of this tutorial, you apply methods to many different objects.
In typical object-oriented programming fashion, the action performed by a
method depends on its object. The relevant or target object is always the first
input argument passed to the method. For example, in the following section
cvar is an object representing the embedded idat variable.

5 Use createobj to construct a MATLAB object that accesses the embedded
variable idat. By assigning the return value to the variable cvar, you have
a handle in MATLAB that represents access to idat on your DSP target:

cvar = createobj(cc,idat)
NUMERIC Object stored in memory:
 Symbol name : idat
 Address : [17468 0]
 Datatype : unsigned short
 Wordsize : 16 bits
 Address units per value : 2 au
 Representation : unsigned
 Size : [2]
 Total address units : 4 au
 Array ordering : row-major
 Endianness : little

6 Now you use cvar to get information about idat, or to manipulate the way
MATLAB interprets idat in your workspace. Try the code examples below
to see how some of the data manipulation methods work:

get(cvar,'size') % Size of cvar should be 2-by-3 as defined in
% our DSP application

ans =

 2 3

read(cvar) % Reads the entire embedded matrix into the MATLAB
% workspace

ans =
2-85

2 Objects for MATLAB Link Software

2-8
 -1 508 647
 7000 8 619

readhex(cvar) % Reads cvar in hex

ans =

 'FFFF' '1FC' '287'
 '1B58' '8' '26B'

readbin(cvar) % Reads cvar in binary

ans =

 '1111111111111111' '0000000111111100' '0000001010000111'
 '0001101101011000' '0000000000001000' '0000001001101011'

The previous read examples return the entire idat matrix to your MATLAB
workspace. You can read and write selected elements of idat by indexing
into it. Being able to read or write with objects is easier and more powerful
than reading and writing to raw DSP memory, or manually figuring out the
right address offsets for your data arrays.

7 In the next code examples, you use indexing to return specific elements of
embedded variable idat, as accessed by cvar. Note the write method for
changing the contents of cvar from MATLAB:

read(cvar,[2 1]) % Read element specified by column 2, row 1

ans =

 7000

write(cvar,[2 1], -7000) % Modifies 7000 to -7000
read(cvar)

ans =

 -1 508 647
 -7000 8 619
6

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
Use read, write, cast, and convert with Objects
The previous read operations with cvar took raw memory values and converted
them into equivalent MATLAB numeric values. The conversion that gets
applied is controlled by the properties of idat, which were initially configured
in createobj to settings appropriate for your DSP architecture and C
representation. In some cases, changing these default conversion properties
can help your development process. Several properties of the object, such as
endianness, arrayorder, and size, can be directly modified using set.
Methods such as convert and cast, which adjust multiple object properties
simultaneously, enable you to make more complex changes from MATLAB.

8 To introduce the idea of changing the representation in MATLAB of an
object, try the following set function on cvar, which changes the way
MATLAB interprets idat. After the change, check that cvar is indeed
smaller:

set(cvar,'size',[2]) % Reduce size of 'idat' to first 2 elements
read(cvar)

ans =

 -1 508

9 Now change the data type of cvar using cast:

uicvar = cast(cvar,'unsigned short')

NUMERIC Object stored in memory:
 Symbol name : idat
 Address : [17468 0]
 Datatype : unsigned short
 Wordsize : 16 bits
 Address units per value : 2 au
 Representation : unsigned
 Size : [2]
 Total address units : 4 au
 Array ordering : row-major
2-87

2 Objects for MATLAB Link Software

2-8
 Endianness : little

Using cast in this way changes the representation of cvar from double
precision to unsigned short. As a result, MATLAB interprets the first value
in cvar as the unsigned equivalent of -1, as shown when you read the new
uicvar object. And do note that uicvar is a new object, not an alias or handle
to cvar, but fully independent of cvar.

read(uicvar)
ans =

 65535 508

In the next step you meet the method convert, which changes the data type
of the specified object, rather than creating a new object with the new data
type.

10 For the second data type conversion method, use convert with cvar to
change the data type for idat in MATLAB:

convert(cvar,'unsigned short')

NUMERIC Object stored in memory:
 Symbol name : idat
 Address : [17468 0]
 Datatype : unsigned short
 Wordsize : 16 bits
 Address units per value : 2 au
 Representation : unsigned
 Size : [2]
 Total address units : 4 au
 Array ordering : row-major
 Endianness : little

read(cvar)
ans =
8

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
 65535 508

Note that the embedded object cvar has the new data type and size; it is not
a new embedded object. Writing this version of cvar back to the DSP
memory would cause idat to take on the new data type definition.

Embedded DSP variables such as strings, structures, bitfields, enumerated
types, and pointers can be manipulated in exactly the same way. The following
operations demonstrate manipulations on structures, strings and enumerated
types. In particular, note the method getmember, which extracts one field from
a structure as a new MATLAB object in your workspace.

11 To demonstrate getmember, you need an embedded object that accesses
a structure in memory. In the following code, you replace your current cvar
object with one that represents a structure named myStruct, an embedded
C structure in the symbol table for the tutorial program:

cvar = createobj(cc,'myStruct')
STRUCTURE Object stored in memory:
 Symbol name : myStruct
 Address : [17440 0]
 Address units per value : 28 au
 Size : [1]
 Total Address Units : 28 au
 Array ordering : row-major
 Members : 'iy', 'iz'

read(cvar)

ans =

 iy: [2x3 double]
 iz: 'MatlabLink'

myStruct is a fairly complex structure containing a variety of data types,
including enumerated data and strings. Since you use the elements of
myStruct in the next steps, carefully review it so you see what it contains
and how.

12 In this step you read, write, and manipulate the elements of myStruct. As
you enter each command, try to determine what you expect to get back from
MATLAB. Notice that we ask you to perform read operations between other
2-89

2 Objects for MATLAB Link Software

2-9
operations. read lets you see the changes you make in DSP memory when
you write variables to CCS, not just in MATLAB:

write(cvar,'iz', 'Simulink')
cfield = getmember(cvar,'iz') % Extract iz field from cvar

ENUM Object stored in memory:
 Symbol name : iz
 Address : [17464 0]
 Wordsize : 32 bits
 Address units per value : 4 au
 Representation : signed
 Size : [1]
 Total address units : 4 au
 Array ordering : row-major
 Endianness : little
 Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MatlabLink=3, EmbeddedTargetC6x=4

write(cfield,4) % Write to same cvar enumerated variable by value
read(cvar)
ans =

 iy: [2x3 double]
 iz: 'EmbeddedTargetC6x'

cstring = createobj(cc,'myString') % cstring represents an
% embedded C structure

STRING Object stored in memory:
 Symbol name : myString
 Address : [17512 0]
 Wordsize : 8 bits
 Address units per value : 1 au
 Representation : signed
 Size : [29]
 Total address units : 29 au
 Array ordering : row-major
 Endianness : little
 Char Conversion Type : ASCII
read(cstring)
0

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
ans =

Treat me like an ANSI String

write(cstring,7,'ME')
read(cstring)
ans =

Treat ME like an ANSI String

write(cstring,1,127) % Set first location to numeric value 127
% (nonprinting ASCII character)

readnumeric(cstring) % Read cstring as equivalent numeric values

ans =

 Columns 1 through 13

 127 114 101 97 116 32 77 69 32 108 105 107 101

 Columns 14 through 26

 32 97 110 32 65 78 83 73 32 83 116 114 105
Columns 27 through 29

 110 103 0

Construct a function object
In step 12 you performed a number of operations on myStruct in your
workspace, and between MATLAB and CCS.

Manipulating embedded data is useful, but eventually you must contend with
embedded functions, not just variables. To facilitate your debugging and
verification work, the MATLAB Link for Code Composer Studio provides
objects for accessing embedded functions directly from MATLAB. This permits
you to execute any C-callable function on your target from MATLAB for
hardware-in-the-loop functionality.

The first step in running embedded functions from MATLAB is to make
function objects by applying the (now familiar) createobj on cc. Just like
variables, use list to retrieve information about functions that you access.
2-91

2 Objects for MATLAB Link Software

2-9
The following steps create an object listI that you use to access the embedded
function sin_taylor.

1 Get information about an embedded function, then create an object to access
the function. Your target function is sin_taylor:

listI =

 sin_taylor: [1x1 struct]

listI.sin_taylor

ans =

 name: 'sin_taylor'
 filename: 'hiltut.c'
 uclass: 'function'
 islibfunc: 0
 address: [1x1 struct]
 linepos: [86 116]
 funcvar: {'a1' 'a2' 'a3' 'acc' 'x' 'xpow'}

cfunc = cc.createobj('sin_taylor') % Create function object

FUNCTION Object
 Function name : sin_taylor
 File found : hiltut.c
 Start address : [12328 0]
 All variables : a1, a2, a3, acc, x, xpow
 Input variables : x
 Return type : short

At this point, you are ready to run function object listI.

Embedded function sin_taylor computes a fixed-point sine function using
four terms of the Taylor series representation. Let’s use your new object cfunc
to verify the embedded function. From the information returned by list, you
know that the input fixed-point data format is Q2.13 and the output is Q1.14.
2

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
2 To run sin_taylor, you provide a number between -pi and pi to use for the
sine calculation. Enter a value as shown in this code:

userval = pi/2; % Use any value between -pi and pi

3 Now run sin_taylor using userval and the cfunc object:

sintf = run(cfunc,'x',userval*2^13)/2^14

The numeric values in the command provide scaling for the binary point in
userval to prevent the output (sintf) from saturating in Q1.14 format.

The returned values from the MATLAB sin function and sin_taylor should
match quite closely.

Use Methods That Work with Function Objects
In some cases you may find it useful to alter function object properties that
were initialized to reflect your DSP source code. Several function object
properties, like returntype, savedregs, and timeout, can be set using set. For
applying other complex properties, MATLAB Link for Code Composer Studio
offers the cast and convert methods.

At times you might like to change the properties of an object while keeping the
original object unchanged, and, if the object is a function, apply the new
properties to a copy of the function. The method copy does just that. In the
following steps of the tutorial, you create a copy of cfunc and use the copy for
program debugging purposes.

1 Create the copy of your cfunc object, and get the properties for it:

cfunc_copy = copy(cfunc)
FUNCTION Object
 Function name : sin_taylor
 File found : hiltut.c
 Start address : [12328 0]
 All variables : a1, a2, a3, acc, x, xpow
 Input variables : x
 Return type : short

getprop(cfunc_copy,'outputvar') % Get the function return type

NUMERIC Object stored in register(s):
2-93

2 Objects for MATLAB Link Software

2-9
 Symbol name :
 Register : A4
 Datatype : Unknown
 Wordsize : 16 bits
 Register units per value : 1 ru
 Representation : signed
 Bit padding (post) : 16
 Size : [1]
 Total register units : 1 ru
 Array ordering : row-major

As you review the information returned by getprop, notice the difference in the
wordsize property between cfunc and cfunc_copy.

2 With the copy of cfunc in your workspace, convert the output data type to
int8 from Q1.14. Recall that int8 is both a MATLAB data type and a C
native data type:

convert(cfunc_copy.outputvar, 'int8')

Property outputvar holds the data type specification for the returned value
from sin_taylor.

3 Entering the following command at the prompt

int8_OUT = run(cfunc_copy,'x',userval*2^13)/2^14

executes the copy of the sin_taylor function that you modified to have the
output data type int8 instead of the original output data type.

Function calls support different types of DSP variables, such as strings,
structures, bitfields, enumerated types, and pointers. In the next examples,
you create an object that accesses sin_taylor_vect, a vectorized version of
sin_taylor.

To prepare to run sin_taylor_vect, you create input and output buffer objects,
each containing 10 memory locations; you supply the start addresses of both
buffers to the function object; and you run the function from MATLAB with
the run method. With vectors needed for its input and output,
sin_taylor_vect uses buffers to store the data in both directions. As a
function that used one input value and returned one output value, sin_taylor
did not require buffers.
4

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
4 Enter the following commands to construct objects that access
sin_taylor_vect and input and output buffers:

cfunc_vec = cc.createobj('sin_taylor_vect') % Yet another object
ibufobj = createobj(cc,'ibuf'); % Create input buffer object
obufobj = createobj(cc,'obuf'); % Create output buffer object

5 With the buffer objects in place, make the input data vector and write the
data to your input buffer:

inputdata = [-pi:0.1:pi]; % Input data to write to the DSP target
write(ibufobj,int16(inputdata*2^13)); % Write data to buffer with

% scaling
write(obufobj,int16(zeros(1,63))); % Set output buffer to zeros
read(ibufobj) % (optional) % Verify data initialization
ans =

 Columns 1 through 6

 -25735 -24916 -24097 -23278 -22459 -21639

 Columns 7 through 12

 -20820 -20001 -19182 -18363 -17543 -16724

 Columns 13 through 18

 -15905 -15086 -14267 -13447 -12628 -11809

 Columns 19 through 24

 -10990 -10171 -9351 -8532 -7713 -6894

 Columns 25 through 30

 -6075 -5255 -4436 -3617 -2798 -1979

 Columns 31 through 36
-1159 -340 478 1297 2116 2936

 Columns 37 through 42
2-95

2 Objects for MATLAB Link Software

2-9
 3755 4574 5393 6212 7032 7851

 Columns 43 through 48

 8670 9489 10308 11128 11947 12766

 Columns 49 through 54

 13585 14404 15224 16043 16862 17681

 Columns 55 through 60

 18500 19320 20139 20958 21777 22596

 Columns 61 through 63

 23416 24235 25054

read(obufobj) % (optional) Should be zeros
ans =

 Columns 1 through 13

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 14 through 26

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 27 through 39

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 40 through 52

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 53 through 63
6

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
 0 0 0 0 0 0 0 0 0 0 0

6 You’ve done all the preparation—now run sin_taylor_vect. Remember
that the object you named cfunc_vec accesses sin_taylor_vect:

outputAddress = run(cfunc_vec,'x',ibufobj.address(1),'y',...
obufobj.address(1),'npts',63);

Notice how the input and output parameters correspond to the prototype of
the function. Also notice how input parameters are supplied in pairs—
parameter name/parameter value.

7 You need to use a new method, deref, to read the output data buffer. The
value in object property outputvar is a pointer. To get to the actual data, you
dereference the pointer (just as you do in C, since you are working in C). The
next code does the dereferencing for you:

outputdataAddress = deref(cfunc_vec.outputvar);
outputdataAddress.size = 63; % Need to read the next 63

% addresses (obufobj)
outputdata = read(outputdataAddress)/2^14; % Get output scaling

%for binary point

8 If you are interested in seeing what you have done, the following code plots
the results from running sin_taylor_vect on your input data set.
Comparing the output from the MATLAB sin function and
sin_taylor_vect gives you an idea of how your algorithm performs on your
DSP target:

subplot(2,1,1)
plot(inputdata,outputdata)
title('Result of sin(inputdata) on the DSP')
a = gca;
set(get(a,'title'),'fontsize',10);
set(a,'fontsize',8);
set(a,'fontweight','light') ;
subplot(2,1,2)
plot(inputdata,sin(inputdata))
title('Result of sin(inputdata) in MATLAB')
b = gca;
set(get(b,'title'),'fontsize',10);
2-97

2 Objects for MATLAB Link Software

2-9
set(b,'fontsize',8);
set(b,'fontweight','light')

Among other things, this example plotting technique might be handy for other
plotting tasks.

Construct Different Objects and Work with Them
In the previous tutorial section, you created an object that accessed a
C function and ran the function in your project from MATLAB. The MATLAB
Link for Code Composer Studio also supports calling library functions—those
functions in your project that are precompiled and callable directly from your
C program—in your project from MATLAB. Library functions do not build
when you build your project in CCS or from MATLAB and therefore do not have

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1
Result of sin(inputdata) on the DSP

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1
Result of sin(inputdata) in MATLAB
8

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
the function prototype available that compiled functions provide and that
MATLAB needs to get the information about the function.

The difference between using function objects with library functions and
regular C functions is you must use the method declare with library functions
to provide the function declaration for the object to MATLAB. Because CCS
cannot provide full information about library functions, MATLAB gets its
library function information from your declare operation. The declare
method accepts C declaration strings for any functions.

In this part of the tutorial, you create an object to access the fir_filter filter
library function, using declare to supply the function declaration to MATLAB.
Then you use the object to run the function in CCS and on your target. To
introduce the concepts needed to work with typedefs you might have defined in
your projects, you use add in this process to define some typedefs in MATLAB
to include in your cc object. Your additional typedefs remain available as long
as the cc object exists for this project.

1 Start this section by creating and plotting the frequency response for a
lowpass FIR filter in MATLAB. Use fir1 from the Signal Processing Toolbox
to create the FIR filter. Later in this section you compare the results of
filtering with this filter to the results of filtering with an FIR filter function
(fir_filter) on your target—they should match closely, within the
differences caused by the filter coefficients being stored on the target with
lower precision:

n = 10;
wb1 = 0.3;
bcoeff = fir1(n,wb1);
[sco sw]=freqz(bcoeff,1);
scodb = 20*log10(abs(sco));
swdb = sw./pi;
h = figure;
plot(swdb,scodb);
hold on; grid on; % Save the figure to add another later.
nfrm = 128;
2-99

2 Objects for MATLAB Link Software

2-1
cscaling = 2^15;
ncoeff = length(bcoeff);

To plot the filter magnitude response, you could have used the Filter
Visualization Tool (FVTool), as shown here:

fvtool(bcoeff,1);

Using FVTool gives you access to a full range of analyses for your lowpass
filter. Plotting the magnitude response in the more conventional way allows
you to compare the results of running the same FIR filter on your target that
you do later in this tutorial.

2 Now create handles to three filter parameters in CCS—coeff (filter
coefficients), nbuf (input buffer), and ncoeff (number of filter coefficients;
equal to [filter order + 1]):

coeff = createobj(cc,'coeff');
nbuf = createobj(cc,'nbuf');
ncoeff = createobj(cc,'ncoeff');

3 You need input and output objects so create them:

din = createobj(cc,'din');
dout = createobj(cc,'dout');

4 To run the filter function, you create and scale input data for the function to
process. The following code creates an input data set with scaling:

datain = randn(nfrm,1);
glim = max([abs(max(datain)) abs(min(datain))]);
dscale = 2^15/(glim*0.99);
idin =int16(dscale*datain);

5 Provide data to your target to initialize the filtering function (fir_filter)
by writing the required input data and filter specifications to the target:

write(coeff,int16(cscaling.*bcoeff));
write(din,idin);
write(ncoeff,n);
00

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
write(nbuf,nfrm);

After you’ve initialized your input data and written the data to the target,
you are ready to run the library function fir_filter in the tutorial project.

6 First create an object to access fir_filter:

ff = createobj(cc,'fir_filter'); % Expect a warning message

Recall from earlier comments in this tutorial that library functions behave
slightly differently from compiled C code functions. When you try to create
a function object to access a library function, you get a warning message
telling you to use declare to supply the function declaration. For library
functions you supply the function declaration to MATLAB using the declare
method. In spite of the warning message, MATLAB creates ff with default
property values.

7 Use declare to provide the function declaration for fir_filter to
MATLAB:

declare(ff,'decl','short fir_filter (short *x, short *h,...
short *r,short **dbuffer, unsigned short nh, unsigned short nx)');

Rather than using declare to define the input and output arguments, you
could use the createinput and createoutput methods with ff to define the
arguments in the function prototype.

8 Add a custom type definition (C typedef) INT16 to the type definitions in cc.
Use list to see the available type definitions:

add(cc.type,'INT16','int16');
list(cc.type) % Display existing defined types. Includes INT16.
Defined types : Void, Float, Double, Long, Int, Short, Char, INT16

9 Running the function requires one more object—a pointer to a buffer. Use
createobj to create the object that accesses dbptr in the symbol table for
your project:

dbptr = createobj(cc,'dbptr');

10 Now run fir_filter from MATLAB. Position the program counter to the
beginning of the function, set the input argument values x, r, h, nh, n, nr, and
nfrm, and run ff:
2-101

2 Objects for MATLAB Link Software

2-1
goto(ff,'x',din.address(1),'h',coeff.address(1),...
'r',dout.address(1),'nh',n,'nr',nfrm);
execute(ff); %

You took advantage of the ability to use goto to both position the PC and set
values for the fir_filter function input arguments. This feature can be
convenient for developing and testing algorithms with HIL work.

11 After the filtering process finishes, use read to get the results back from CCS
to MATLAB:

idout = read(dout);

12 Plot idout to see the magnitude response of the FIR filter on your target:

[sout wsd]= pwelch(double(idout));
sin = pwelch(double(idin));
runningsum = (sout./sin);
wplotdb = 10*log10(runningsum/1);
wsdn = wsd/pi;
plot(wsdn,wplotdb,'r');
title('Target Generated Filter Response');

Compare this response to the magnitude response from FVTool you created
earlier. Your target stores the filter coefficients slightly differently from
MATLAB, so the results are not identical—the filters are not quite the same.
02

Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
Close The Tutorial and Clean Up
Finally, the objects created during this tutorial have COM handles to CCS.
Until you delete these handles, the CCS process remains in memory. Closing
MATLAB removes these handles, but in some cases you may find it useful to
delete them without closing MATLAB. Use clear to remove objects from your
MATLAB workspace and delete the handles that objects contain. clear all
deletes everything in your workspace. To retain your MATLAB workspace
contents while removing specific objects, use clear on the objects to remove,
such as those derived from your ccsdsp object, including all embedded objects
returned by createobj.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10
MATLAB Response Compared to Target Response

Normalized Frequency
2-103

2 Objects for MATLAB Link Software

2-1
In addition the tutorial performs a close operation to remove the tutorial
project from CCS.

1 First close your project file from MATLAB by entering

close(cc,'projfile','project') % Clean-up CCS by closing the...
%project file

2 To remove the objects you created during the tutorial, enter

clear cc cvar cfield uicvar cstring ibufobj obufobj cfunc
cfunc_vec cfunc_copy

at the command line.

If you do not care about keeping other variables and objects that were in
your MATLAB workspace when you started this tutorial, use clear all to
remove everything from your workspace—objects, variables, and more—in
one operation.
04

Managing Custom Data Types with the Data Type Manager
Managing Custom Data Types with the Data Type Manager
Using custom data types, called typedefs (using the C keyword typedef), is one
of the complications you encounter when you use hardware-in-the-loop (HIL)
to run a function in your project from MATLAB. Since MATLAB does not
recognize custom type definitions you use in your projects, it cannot interpret
data that you define in your project code with the typedef keyword, or use as
arguments in your function prototype (declaration).

To allow you to use functions that include custom type definitions in HIL,
MATLAB Link for Code Composer Studio offers the Data Type Manager
(DTM), a tool for defining custom type definitions to MATLAB. Using options
in the DTM, you define one or more custom data types for a project and use
them in the project. Or you define your custom data types and save them to use
in many projects. This second feature is particularly useful when you use the
same custom data types in many projects. Rather than redefining your custom
types for each new project or function, you reload the types from an earlier
project to use them again.

As programmers, usually you use typedefs for one or more of a few reasons:

• Make your code more accessible by providing more information about the
variable(s)

• Create a Boolean data type that C does not provide

• Define structures in your programs

• Define nonstandard data types

The DTM lets you define all of these things in the MATLAB context so your
C function that uses typedefs works with your MATLAB command line
functions. For reference information about the DTM, go to datatypemanager.

Entering

datatypemanager(cc)

at the MATLAB command line opens the DTM, with the Data Type Manager
dialog shown here:
2-105

2 Objects for MATLAB Link Software

2-1
When the DTM opens, a variety of information and options displays in the
Data Type Manager dialog:

• Typedef name (Equivalent data type)—provides a list of default data
types. When you create a typedef, you see it added to this list.

The lowercase versions of the data types appear because MATLAB does not
recognize the initial capital versions automatically. In the data type list the
project data type with the initial capital letter is mapped to the lowercase
MATLAB data type.

• Add typedef—opens the Add Typedef dialog so you can add one or more
typedefs to your object. Your added typedef appears on the Typedef name
(Equivalent data type) list and is added to your ccsdsp object. Also, when
you pass the cc object to the DTM, then add a typedef, the command
06

Managing Custom Data Types with the Data Type Manager
cc.type

returns the list of data types in the type property of your cc object, including
the typedefs you added.

• Remove typedef—removes a selected typedef from the Typedef name
(Equivalent data type) list.

• Load session—loads a previously saved session so you can use the typedefs
you defined earlier without reentering them.

• Refresh list—updates the list in Typedefs name (Equivalent data type).
Refreshing the list ensures the contents are current. If you changed your
project data type content or loaded a new project, this updates the type
definitions in the DTM.

• Close—closes the DTM and prompts you to save the session information.
This is the only way to save your work in this dialog. Saving the session
creates an M-file you can reload into the DTM later.

Adding Custom Type Definitions to MATLAB
Every custom type definition in your project must appear on the Typedef name
(Equivalent data type) list for MATLAB to understand the data types
involved. To add entries the list, use the Add typedef option to identify your
type definition with a data type that MATLAB recognizes. When you click Add
typedef, the List of Known Data Types dialog opens, displaying the data
types currently recognized by MATLAB. To make finding a specific type easier,
the known data types are grouped into categories:

• MATLAB types

• TI C types

• TI fixed point types

• Struct, union, enum types

• Other (e.g. pointers, typedefs)

Each custom type definition added in the DTM becomes part of the ccsdsp
object passed to the DTM in datatypemanager(objectname). The list of data
types in the object, both default and custom, is available by entering

objectname.type

at the command prompt.
2-107

2 Objects for MATLAB Link Software

2-1
The same list appears in the DTM on the Typedef name (Equivalent data
type)

MATLAB uses the type definitions when you run a function residing on your
target from MATLAB.

To Add a Typedef to MATLAB
You use the DTM to add typedefs for MATLAB to recognize, such as:

• Typedefs that use a MATLAB data type in the type definition

• Typedefs that use an enumerated or union data type in the type definition

• Typedefs that use a structure in the type definition

• Typedefs that use pointers or typedefs in the type definition

To define custom data types that use structs, enums, or unions from a project,
the project must be loaded on the target before you add the custom type
definitions. Either load the project and .out file before you start the DTM, or
use the Load Program option in the DTM to load the .out file.
08

Managing Custom Data Types with the Data Type Manager
Note When the load process works, you see the name of the file you loaded in
Loaded program. Otherwise you get an error message that the load failed.

Only programs that you load from this dialog appear in Program loaded.
Programs that are already loaded on your target do not appear in the Loaded
program option. MATLAB cannot determine what program you have loaded.

You need to know the custom definitions you used so you can add them in the
DTM. Use the options for list to verify whether you loaded a .out file on the
target.

Follow the example procedure to add type definitions to your project. To go
directly to a specific typedef example, click one of these links:

• “Add a MATLAB type definition” on page 2-111

• “Add an enumerated type definition” on page 2-112

• “Add a structure typedef” on page 2-113

Create an object and load a program.

1 Create a ccsdsp object.

cc=ccsdsp;

2 Load a program on your target. For example, the MATLAB command

load(cc,'c6701evmwdnoisf_c6000_rtwD\c6701evmwdnoisf.out');

loads the executable file from the model C6701evmwdnois.mdl on the target.

3 Start the DTM with the object you created.
2-109

2 Objects for MATLAB Link Software

2-1
datatypemanager(cc);

The DTM starts, showing the default data types.

4 Click Add typedef to add your first custom data type. The List of Known
Data Types dialog appears as shown.
10

Managing Custom Data Types with the Data Type Manager
Add a MATLAB type definition.

5 In Typedef, enter the name of the typedef as you defined it in your code. For
this example, use typedef1_matlab.

6 Select an appropriate MATLAB data type from the MATLAB Types in Known
Types. uint16 is the choice. Choose the data type that best represents the
data type in your code.
2-111

2 Objects for MATLAB Link Software

2-1
7 Click OK to close the dialog and add the new type definition to the Typedef
name list.

Add an enumerated type definition.

8 Click Add Typedef.

9 From the Known Types list, select Struct, Enum, Union Types.

10 To define your type definition, give it a name in Typedef, such as
typedef_enum

11 From the Struct, Enum, Union Types list, select the appropriate
enumerated data type to use with typedef_enum. The enum_TAG_myEnum
choice fills the enumerated type chosen.
12

Managing Custom Data Types with the Data Type Manager
12 Click OK to close the dialog and add typedef_enum to your defined types
that MATLAB recognizes.

Add a structure typedef.

13 Click Add Typedef.

14 From the Known Types list, select Struct, Enum, Union Types.

15 To define your type definition, give it a name in Typedef, such as
typedef_struct.

16 From the Struct, Enum, Union Types list, select the appropriate
enumerated data type to use with typedef_struct. This example uses
struct_TAG_mySTruct.

17 Click OK to close the dialog and add the new data type to the list.

After you close the dialog, the Typedef name list in the Data Type Manager
looks like this.
2-113

2 Objects for MATLAB Link Software

2-1
To check the data types in the cc object, enter

cc.type

which returns

Defined types : Void, Float, Double, Long, Int, Short, Char,
typedef1_matlab, typedef_enum, typedef struct

If your function declaration uses any of the types listed by cc.type, MATLAB
can interpret the data correctly. For example, MATLAB interprets the
typedef1_matlab data type as uint16.

Clicking Close in the DTM prompts you to save your session. Saving the
session creates an M-file that contains operations that create your final list of
data types, identical to the data types in the Typedef name list.
14

Managing Custom Data Types with the Data Type Manager
The first line of the M-file is a function definition, where the name of the
function is the filename of the session you saved. In the stored M-file, you find
a function that includes add and remove operations that replicate the add and
remove typedef operations you used to create the list of known data types in
the DTM. For each time you added a typedef in the DTM, the M-file contains
an add command that adds the new type defintion to the type property of the
cc object. When you removed a data type, you created an equivalent clear
command that removes the specified data type from the type property of the cc
object.

An interesting note—all of the operations you performed adding and removing
data types in the DTM during the session are stored in the generated M-file
that you save. This has the effect of storing any mistakes you made while
creating or removing type definitions. One consequence of storing mistakes is
when you load your saved session into the DTM, you see the same error
messages you saw, if any, when you created the data types in the session. You
might find this disconcerting.
2-115

2 Objects for MATLAB Link Software

2-1
Reference for the Properties of Embedded Objects
This section presents details of the properties that apply to the embedded
objects in MATLAB Link for Code Composer Studio. The reference information
contained can help you learn about using the links and objects.

Property Reference Format and Contents
Ordered alphabetically by property name, references include

• Property name heading

• Description

• Property characteristics, including

- Data type

- Default value

- Read/Write status

• Range of valid property values

• One or more examples using the property

• Referrals to related properties where appropriate

Some reference pages do not include all the features listed; in particular some
pages may not provide examples or the range of valid property values or
referrals.

address

Description
Reports the starting address of the symbol the object references—either a
memory address or a register name. In some cases the address is in
[Offset Page] format when the processor supports memory pages and the
address is a location in memory.

Characteristics
Either a numeric value (for memory locations) or alphanumeric value (for
register locations), this is a writable value.
16

Reference for the Properties of Embedded Objects
If you change the offset and page values for the property, the object points to a
different location in memory. Changing the address property does not affect the
location of the symbol.

Range
Covers the entire range of addresses available on the target.

apiversion

Description
Contains a string that defines the version of the CCS application program
interface (API) being used by the link object.

Characteristics
A string value. The first entry in the square brackets is the major version
number and the second entry is the minor revision number. You cannot set this
value—it is read only.

Range
Any ASCII characters that make up the name and version number of the API.

Examples
Create a link object and use get to review the object properties. For this object,
the API version returns 1.2 and apiversion is [1 2]. The API version may
not be the same as the version of CCS:

cc=ccsdsp

CCSDSP Object:
API version : 1.2

 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0
2-117

2 Objects for MATLAB Link Software

2-1
get(cc)
 rtdx: [1x1 rtdx]
 apiversion: [1 2]
 ccsappexe: 'D:\Applications\ti\cc\bin\'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

arrayorder

Description
Specifies the manner in which the object interprets data stored linearly in
memory, whether as rows or columns of an array.

Characteristics
A string with one of two possible values—row-major (C style interpretation) or
col-major (normal MATLAB ordering).

Range
Allowed strings are row-major and column-major.

Examples
When you have nine values in memory, such as 1, 2,…, 9, the arrayorder
property value determines how to build an array from the values:

• In row-major order, the values form the 3-by-3 array by filling the array row
by row and left to right:
1 2 3
4 5 6
7 8 9

• In column-major order, the values form the 3-by-3 array by filling the array
column by column and top to bottom:
1 4 7
2 5 8
3 6 9
18

Reference for the Properties of Embedded Objects
You can increase the number of array dimensions without limit.

binarypt

Description
Specifies the location of the binary point in a value. To interpret the actual
value of a value in memory, you need both the data type and binary point to
convert correctly from the binary or hexadecimal representation to decimal. A
fixed-point data type is characterized by the word size in bits, the binary point,
and whether it is signed or unsigned. The position of the binary point is the
means by which fixed-point values are scaled and interpreted. Since the object
uses double-precision representation, the word size and binary point form the
basis for simulating fixed-point values.

Characteristics
A positive or negative integer.

Range
binarypt ranges from 0 to the word size. You can use negative binary point
locations and binary point locations larger than the word size, to the limit of
double-precision representation.

Referrals
See also wordsize.

bitsperstorageunit

Description
Reports the smallest number of bits per address location (addressable unit) on
the target. Memory locations and registers may have different values on a
target. Different processors can use different values as well.

Characteristics
An integer.
2-119

2 Objects for MATLAB Link Software

2-1
Range
Depends on the target processor. Usually 8, 16, or 32 bits.

Referrals
See also numberofstorageunits and storageunitspervalue.

boardnum

Description
Specifies the target board or simulator with which the link object
communicates.

Characteristics
An integer. This is a read-only value determined when you create link objects
and select your target.

Range
Integer values ranging from 0 for the first board up to the number of boards
that CCS recognizes configured on your machine. Note that both simulators
and hardware count as boards.

ccsappexe

Description
Reports the full directory path to the CCS executable.

Characteristics
A string that shows the path to your CCS installation. You cannot change this
string except by moving your CCS storage location.

Examples
If your CCS installation is in a folder called Applications on your D: drive, you
might see a string such as

'D:\Applications\ti\cc\bin\'

for the ccsappexe property value when you use the command
20

Reference for the Properties of Embedded Objects
cc.ccsappexe

at the MATLAB prompt.

charconversion

Description
Specify the character set that read and write use to interpret data in memory
or when transferring data to target memory. When you set the charconversion
property, you are telling read or write to interpret the data, either in MATLAB
or on the target, as though they represent values in the specified character set.

For read, charconversion tells MATLAB to return the values from memory as
characters from the specified data set. For write, charconversion tells
MATLAB to write the data to target memory as the numeric equivalents of the
specified character set. Recall that all data in memory is numeric.
charconversion defines how the numeric values in memory become characters
in MATLAB. And how characters in MATLAB become numeric values on the
target.

Characteristics
This is a string and should be entered as a string in single quotation marks.

Range
The only valid entry for charconversion is ascii.

endianness

Description
Specifies whether to interpret the bit pattern in memory as little-endian or
big-endian format. Big-endian format assumes the least significant bit (LSB) is
last in a word that spans more than one addressable unit in memory;
little-endian assumes the LSB is first in a word that spans multiple
addressable units.
2-121

2 Objects for MATLAB Link Software

2-1
Characteristics
Property values are strings, either little or big. You can change the state
within the object, which changes the way MATLAB interprets the bits stored
in memory on your target.

Range
You have two options for endianness—little or big.

Examples
When you have a variable in memory, such as ddat from the link object
tutorial, creating a numeric object to access ddat shows you whether ddat is big
endian or little endian:

ddat = createobj(cc,'ddat')

NUMERIC Object
 Symbol Name : ddat
 Address : [40072 0]
 Wordsize : 64 bits
 Address Units per value : 8 AU
 Representation : float
 Binary point position : 0
 Size : [4]
 Total address units : 32 AU
 Array ordering : row-major
 Endianness : little

get(ddat)
 address: [40072 0]
 bitsperstorageunit: 8
 numberofstorageunits: 32
 link: [1x1 ccsdsp]
 timeout: 10
 name: 'ddat'
 wordsize: 64
 storageunitspervalue: 8
 size: 4
 endianness: 'little'
 arrayorder: 'row-major'
22

Reference for the Properties of Embedded Objects
 prepad: 0
 postpad: 0
 represent: 'float'
 binarypt: 0

filename

Description
Specifies the name of the file in the project that contains the function
declaration. When you create an object that accesses a function, MATLAB
returns the name of the file in filename. When the target function is a library
function, filename is empty.

Characteristics
A string that contains the full path name to a file.

Range
Any valid filename and directory path.

inputnames

Description
Defines and contains the names of input arguments to a function in your
project. For library functions, inputnames is empty until you use declare or
getinputs to define the input arguments for the function.

Characteristics
A character string in the form of an mxArray.

Range
Any valid C variable name string.
2-123

2 Objects for MATLAB Link Software

2-1
inputvars

Description
The objects that represent each input argument to a function when you create
a function object to access a specific function. When you create a new function
object, MATLAB creates appropriate objects to access each input argument to
the function.

Characteristics
An object that represents the input argument type, such as numeric or pointer.
These are handles to objects.

Range
Any valid object in MATLAB Link for Code Composer Studio.

label

Description
Contains the names of the fields in an enumerated object or memory location.

Characteristics
ASCII characters of any type. Contains as many strings as there are
enumerated entries, entered as a cell array of strings.

Examples
Using the cfield object created in the link tutorial (run ccstutorial at the
MATLAB prompt), you see the following when you display the object:

cfield

ENUM Object
 Symbol Name : iz
 Address : [40056 0]
 Wordsize : 32 bits
 Address Units per value : 4 AU
 Representation : signed
 Binary point position : 0
 Size : [1]
24

Reference for the Properties of Embedded Objects
 Total address units : 4 AU
 Array ordering : row-major
 Endianness : little
 Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MATLABLink=3, EmbeddedTargetC6x=4

The labels are MATLAB, Simulink, SignalToolbox, MATLABLink, and
EmbeddedTargetC6x. In this case, label is {1x5 cell}.

Referrals
See also property value.

link

Description
Specifies the link object you used when you created the embedded object.

Characteristics
A 1-by-1 array containing the name of the link object associated with the
symbol table that holds the symbol.

Examples
In the tutorial, you created a numeric object named uicvar, using cast with
the numeric object cvar. To create cvar, you used link object cc to determine
the symbol table and project or target. When you view the properties of uicvar,
you see the property link listing the link object as ccsdsp:

get(uicvar)
 address: [40060 0]
 bitsperstorageunit: 8
 numberofstorageunits: 4
 link: [1x1 ccsdsp]
 timeout: 10
 name: 'idat'
 wordsize: 16
 storageunitspervalue: 2
 size: 2
 endianness: 'little'
 arrayorder: 'row-major'
2-125

2 Objects for MATLAB Link Software

2-1
 prepad: 0
 postpad: 0
 represent: 'unsigned'
 binarypt: 0

Delving more deeply into the property link reveals the properties of the link
object:

uicvar.link

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

Referrals
See also createobj

Member

Description
This identifies a MATLAB structure that holds the entry for each C member in
the structure accessed by the object.

Characteristics
A MATLAB array containing

• Array type

• Array dimensions

• Data associated with this array

• If numeric, whether the variable is real or complex

• If a structure or object, the number of fields and field names
26

Reference for the Properties of Embedded Objects
Examples
If you have a structure in DSP memory declared like the following structure

struct TAG_myStruct {
int iy[2][3];
myEnum iz;

} myStruct = { {{1,2,3},{4,-5,6}}, MatlabLink};

the member property of an object the access myStruct, might look like

get(cvar)
 name: 'myStruct'
 member: [1x1 ccs.containerobj]
 membname: {'iy' 'iz'}
 memboffset: [0 24]
 address: [40032 0]
 storageunitspervalue: 28
 size: 1
 numberofstorageunits: 28
 arrayorder: 'row-major'

where member is a 1-by-1 MATLAB array with a handle to the object that
contains it named ccs.containerobj.

Membname

Description
Contains the names of the fields in a structure or union accessed by a structure
object.

Characteristics
membname is one or more strings providing the names of the structure fields,
formatted as a cell array.

Range
Strings in membname contain any valid ASCII characters that might be found in
a C structure field.
2-127

2 Objects for MATLAB Link Software

2-1
Examples
In CCS, if you had the following structure in your project code

struct tag {
int _a;
int B;
int b;
} var;

you could create a structure object, var, that accesses the structure. Using get
with var lets you review the names of the fields in the structure by looking at
the membname property for var:

var = createobj(cc,'var')
get(var,'membname')
'a' 'B' 'b'

memboffset

Description
While this is not directly useful to you, the values in the vector specify how far,
in memory in addressable units, each field in a structure is from the starting
address for the structure.

Characteristics
Any numeric or alphanumeric value that represents a valid address or register
location on the target. The vector contains one element for each field in the
structure, representing the offset to that field in memory.

Range
A vector containing M element, where M is the number of fields in the structure.
The second element in the vector is the offset to the second field in the
structure, the third element in the vector is the offset to the third field, and so
on until the final element is the offset to the final field. The first element in the
memoffset vector is always 0, since this represents the offset to the first
element in the structure, which is where the structure begins.
28

Reference for the Properties of Embedded Objects
Examples
When you are working with structure objects, the property memoffset tells you
how far one structure field is from another in memory:

cvar = createobj(cc,'myStruct')

STRUCTURE Object:
 Symbol Name : myStruct
 Address : [40032 0]
 Address Units per value : 28 AU
 Size : [1]
 Total Address Units : 28 AU
 Array ordering : row-major
 Members : 'iy', 'iz'

read(cvar)

ans =

 iy: [2x3 double]
 iz: 'MatlabLink'
get(cvar)
 name: 'myStruct'
 member: [1x1 ccs.containerobj]
 membname: {'iy' 'iz'}
 memboffset: [0 24]
 address: [40032 0]
 storageunitspervalue: 28
 size: 1
 numberofstorageunits: 28
 arrayorder: 'row-major'

From the property memoffset, you see that member iz of myStruct is 24
addresses from member iy, and from the start of the structure.
2-129

2 Objects for MATLAB Link Software

2-1
name

Description
Provides the name of the symbol or embedded object (mostly they are the same
thing) to which the object refers. Contains the name of the function when the
embedded object is a function.

Characteristics
ASCII character string that composes a valid C variable name.

Range
Any valid C variable name that occurs in your project.

numberofstorageunits

Description
Reports the number of smallest addressable units necessary to represent the
symbol to which the object refers.

Characteristics
Reported in addressable units. Property bitsperstorageunit tells you how
many bits are in each addressable unit—the smallest value supported by the
processor. Combined with property numberofstorageunits, you can determine
the storage used by the symbol.

Range
Any number of addressable units up to the limit of memory on the target.

numchannels

Description
Reports the number of RTDX communications channels configured for the
RTDX link. Includes both read and write channels and does not depend on
whether the channels are enabled.
30

Reference for the Properties of Embedded Objects
Examples
As you did if you followed the RTDX tutorial in “Tutorial 1-2—Using Links for
RTDX” on page 1-48, create a link object, then open two RTDX channels for the
link:

cc=ccsdsp('boardnum',boardNum,'procnum',procNum)

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

cc.rtdx.configure(1024,4);

cc.rtdx.open('ichan','w');

cc.rtdx.open('ochan','r');

cc.rtdx.enable;

get(cc,'rtdx')

RTDX Object:
 Default timeout : 15.00 secs
 Open channels : 2

 Ch Name Mode
 -- ---- ----
 1 ichan write
 2 ochan read

Where the listing for the RTDX object shows two open channels, this is the
numChannels property value.
2-131

2 Objects for MATLAB Link Software

2-1
offset

Description
Specifies the starting position of the bitfield relative to bit 0 of the address. For
A value of zero indicates that the bitfield begins at bit 0.

Characteristics
offset is an integer specifying a number of bits. The default value is zero.

outputvar

Description
An object created by MATLAB Link for Code Composer Studio that represents
the output argument from a function.

Characteristics
A handle to an object

Range
A handle to any valid object in MATLAB Link for Code Composer Studio.

page

Description
When you get the properties of an object, the address comes back in the format
[address page]. In the address field for your object, page specifies which
memory page contains the symbol address. For processors that do not use
pages in memory, such as the C6701, the page value is always 0.

Characteristics
An integer that specifies the memory page for an address in memory.

Range
From 0 to the maximum number of memory pages supported by the processor.
32

Reference for the Properties of Embedded Objects
Examples
Given a symbol in memory named ddat, after you create an object to access
ddat, you can get the properties for the object and see the address format:

ddat=createobj(cc,'ddat')

NUMERIC Object
 Symbol Name : ddat
 Address : [40072 0]
 Wordsize : 64 bits
 Address Units per value : 8 AU
 Representation : float
 Binary point position : 0
 Size : [4]
 Total address units : 32 AU
 Array ordering : row-major
 Endianness : little

Notice that the memory page value is 0—the second value in the address field
[40072 0] in the example. Since this example targets a C6701 digital signal
processor, the page property value is always zero—the C6701 processor does
not support memory pages.

postpad

Description
Reports the number of bits of padding required at the end of the memory buffer
to fill the buffer. Determining the final numeric value stored in memory ignores
the added bits.

Characteristics
Double-precision value that specifies the number of added bits.
2-133

2 Objects for MATLAB Link Software

2-1
prepad

Description
Reports the number of bits of padding required at the beginning of the memory
buffer to fill the buffer. Determining the final numeric value stored in memory
ignores the added bits.

Characteristics
Double-precision value that specifies the number of added bits.

procnum

Description
The number assigned by CCS to the processor on the board or simulator. When
the board contains more than one processor, CCS assigns a number to each
processor, numbering from 0 for the first processor on the first board. For
example, when you have two recognized boards, and the second has two
processors, the first processor on the first board is procnum=0, and the first and
second processors on the second board are procnum=1 and procnum=2. This is
also a property used when you create a new link to CCS IDE.

Range
From 0 for one processor to N-1, where N is the number of processors that CCS
recognizes as installed and configured on your machine.

Description
Contains the name of the register as used by the target. Note that this is not
the same as a CPU register on the target.

Characteristics
regname is a MATLAB array with no initial value nor a default value.

Range
Any valid register used by your target.
34

Reference for the Properties of Embedded Objects
represent

Description
Contains a string that specifies the data type for the accessed symbol. Memory
locations consist of bits and bytes. The property value for represent specifies
to MATLAB how to interpret the data stored in memory on the target.

Characteristics
A string that defines the data type for the variable—one of the following strings
applies:

• float—IEEE floating point representation, either 32- or 64 bits

• fract—fractional fixed-point data

• signed—two’s complement signed integers

• ufract—unsigned fractional fixed-point data

• unsigned—unsigned two’s complement integer data

Range
While MATLAB recognizes many different data types, C and the TI processors
are somewhat different. The tables provided here show the valid data types
(from property datatype) and the strings that appear for them as the
represent property value.

datatype Property String represent Property Value

'double' 'float'

'single' 'float'

'int32' 'signed'

'int16' 'signed'

'int8' 'signed'

'uint32' 'unsigned'

'uint16' 'binary'
2-135

2 Objects for MATLAB Link Software

2-1
Various TI processors restrict the sizes of the data types used by objects in
MATLAB Link for Code Composer Studio. Shown in the next table, the
processor families restrict the valid word sizes for the listed data types.

Using the properties of the objects, you change the word size by changing the
value of the storageunitspervalue property of the object. Note that you

'uint8' 'binary'

'long double' 'float'

'float' 'float'

'long' 'signed'

'int' 'signed'

'char' 'signed'

'unsigned long' 'signed'

'unsigned int' 'unsigned'

'unsigned char' 'binary'

'Q0.15' 'fract'

'Q0.31' 'fract'

represent
Property Value

C54 Processor Word
Size Limits

C6x Processor Word
Size Limits

'float' 32, 64 bits 32,64 bits

'signed' 16, 32 bits 8, 16, 32, 40, 64 bits

'unsigned' 16, 32 bits 8, 16, 32, 40, 64 bits

'binary' 16, 32 bits 8, 16, 32, 40,64 bits

'fract' 16, 32 bits 8, 16, 32, 40, 64 bits

datatype Property String represent Property Value
36

Reference for the Properties of Embedded Objects
cannot change the bitsperstorageunit property value which depends on the
processor and whether the object represents a memory location or a register.

Referrals
See also cast, convert

rtdx

Description
Specifies whether the link object has RTDX channels included in the link.
When the link has open RTDX channels, this property contains a structure of
cell arrays that detail the information about the channels—the number of
channels and the names of the channels.

Characteristics
Empty or an array of cell arrays containing strings and values.

Examples
When you create a link, the default state is not to have RTDX channels and the
property rtdx is empty, as you see here:

cc=ccsdsp('boardnum',boardNum,'procnum',procNum)

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

Now, configure and open two RTDX channels to the target:

cc.rtdx.configure(1024,4);

cc.rtdx.open('ichan','w');
2-137

2 Objects for MATLAB Link Software

2-1
cc.rtdx.open('ochan','r');

After creating the channels, displaying the link shows that the rtdx property
is no longer empty. It contains the names and number of channels available,
and the channel mode, either read or write:

get(cc)
 rtdx: [1x1 rtdx]
 apiversion: [1 2]
 ccsappexe: 'D:\Applications\ti\cc\bin\'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

get(cc,'rtdx')

RTDX Object:
 Default timeout : 15.00 secs
 Open channels : 2

 Ch Name Mode
 -- ---- ----
 1 ichan write
 2 ochan read

Referrals
See also ccsdsp, enable, open

rtdxchannel

Description
Provides the names of open RTDX channels for the link.

Characteristics
Alphanumeric strings using ASCII characters that define the channel names.
38

Reference for the Properties of Embedded Objects
Range
From 0 to the number of defined and open channels in your project.

size

Description
Defines the number of dimensions for the numeric array that is accessed by the
numeric object. The size property provides the same information that function
size provides in MATLAB.

Characteristics
size is a vector having as many elements as the number of dimensions in the
symbol represented by the object. Each element in the vector reports the
number of entries in that dimension.

Range
size can be a scalar greater than or equal to one, or a vector of integers, each
greater than or equal to one.

Examples
When you have a variable declaration in your code like

int x[3] [2] = {(1,2),(3,4),(5,6)};

the size property tells you about x if you create an object that accesses x.

x = createobj(cc,'x');

get(x,'size')

ans =

[3 2]

so x represents a 3-by-2 array having six elements.
2-139

2 Objects for MATLAB Link Software

2-1
savedregisters

Description
Contains the list of registers whose contents are saved during function
processing. The list of registers is different for each processor, and you can
change the registers on the savedregisters list using addregister and
deleteregister. Note that you cannot delete the default registers for
a processor. You can delete only registers that you add.

Characteristics
An mxArray that contains the names of all registers on the target that are
preserved during processing.

Examples
For the C54x family of signal processors, the default saved registers are

AR1, AR6, AR7, and SP. Register SP is not required to be saved by the
processor but MATLAB Link for Code Composer Studio requires that the
contents of SP be saved.

storageunitspervalue

Description
Describes how many storage units (addressable (AU) or register (RU) units)
make up the accessed symbol.

Characteristics
Given in addressable units (AU or RU), storageunitspervalue is an integer.

Range
storageunitspervalue is an integer equal to or greater than one, up to the
limit of your target processor. This can have a value less than one in the case
of packing of the bits in the symbol.

Examples
From the HIL tutorial (“Tutorial 2-1—Using Function Objects and
Hardware-in-the-Loop” on page 2-74, object cfield returns the following
40

Reference for the Properties of Embedded Objects
properties when you create an object to provide access to the myStruct member
iz:

cfield = getmember(cvar,'iz') % Extract object from structure

ENUM Object
 Symbol Name : iz
 Address : [40056 0]
 Wordsize : 32 bits
 Address Units per value : 4 AU
 Representation : signed
 Binary point position : 0
 Size : [1]
 Total address units : 4 AU
 Array ordering : row-major
 Endianness : little
 Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MatlabLink=3, EmbeddedTargetC6x=4

get(cfield)
 address: [40056 0]
 bitsperstorageunit: 8
 numberofstorageunits: 4
 link: [1x1 ccsdsp]
 timeout: 10
 name: 'iz'
 wordsize: 32
 storageunitspervalue: 4
 size: 1
 endianness: 'little'
 arrayorder: 'row-major'
 prepad: 0
 postpad: 0
 represent: 'signed'
 binarypt: 0
 label: {1x5 cell}
 value: [0 1 2 3 4]
2-141

2 Objects for MATLAB Link Software

2-1
Requiring 4 addressable units (storage units) with 8 bits per storage unit
(property bitsperstorageunit = 8) and a size of 1, cfield requires 32 bits of
storage space in memory.

timeout

Description
Specifies how long MATLAB Link for Code Composer Studio waits for an
operation to complete, or at least to return a status of complete. In some cases,
operations continue after the time-out expires, since the time period depends
on the status of the operation, not the actual completion.

Characteristics
A value in seconds.

Range
A value greater than zero. 10 s is the default value. The time-out period for
build is 1000 s.

Examples
In this example, the time-out period is 10 seconds for the new object:

cc=ccsdsp('boardnum',boardNum,'procnum',procNum)

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0
42

Reference for the Properties of Embedded Objects
type

Description
Specifies the return type for a function in your project.

Characteristics
A string the contains a valid return type, such as a data type or void.

typelist

Description
Lists the type entries in a type object. When you construct a ccsdsp object cc,
it contains a type object cc.type with default entries void, float, double,
long, int, short, and char. After you add your typedefs to the type object,
typelist contains a listing of the types in the object.

Characteristics
An cell array of alphanumeric strings. The default entries in typelist are
void, float, double, long, int, short, and char

typename

Description
Lists the type names in a type object. When you construct a ccsdsp object cc,
it contains a default type object cc.type. After you add your typedefs to the
type object, typelist contains a list of the names of the types in the object.

Characteristics
An mxArray of alphanumeric strings.

Examples
Add a type definition to a cc object. You add your typedef to the type object that
is part of the ccsdsp object:

cc=ccsdsp;
add(cc.type,'mytypedef','uint32')
2-143

2 Objects for MATLAB Link Software

2-1
ans =

 type: 'uint32'
 size: 1
 uclass: 'numeric'

cc.type

Defined types : Void, Float, Double, Long, Int, Short, Char,
mytypedef

typestring

Description
Describes the data type of the referent for the pointer object accesses.
typestring returns the data type for the referent as well as an asterisk to
indicate that the symbol is a pointer.

Examples
For a pointer object that points to a floating-point symbol, the property value
for typestring is float *. For a pointer to an integer, the value is int *.

value

Description
Reports the values associated with labels in an enumerated object.

Characteristics
Numbers, one or more, configured as a vector depending on the number of
entries.

Examples
Using the enumerated data type variable myEnum from the link tutorial, create
an object that accesses the labels and values for the enumerated data variable
iz:

cvar = createobj(cc,'myStruct')
44

Reference for the Properties of Embedded Objects
STRUCTURE Object:
 Symbol Name : myStruct
 Address : [40032 0]
 Address Units per value : 28 AU
 Size : [1]
 Total Address Units : 28 AU
 Array ordering : row-major
 Members : 'iy', 'iz'

cfield = getmember(cvar,'iz')

ENUM Object
 Symbol Name : iz
 Address : [40056 0]
 Wordsize : 32 bits
 Address Units per value : 4 AU
 Representation : signed
 Binary point position : 0
 Size : [1]
 Total address units : 4 AU
 Array ordering : row-major
 Endianness : little
 Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MatlabLink=3, EmbeddedTargetC6x=4

The values for iz are 0, 1, 2, 3, and 4. In the value property, the values show
up as [0 1 2 3 4], a vector whose elements are the values.

wordsize

Description
Specifies the word size for the target processor, and the referenced symbol.

Characteristics
Depends on the processor architecture. Because this is fixed on the processor,
it is read only, set when you create an embedded object.
2-145

2 Objects for MATLAB Link Software

2-1
Range
For most processors, the word size can be from 8 to 64 bits, usually 8, 16, or 32.
46

3

Link Functions Reference

Using the Link Function Reference
(p. 3-2)

Explains the contents of the function reference pages

Tables of Link Software Functions
(p. 3-3)

Lists of the functions in the product

Link Functions—Alphabetical List
(p. 3-8)

Provides an alphabetical listing of the functions in the
product

3 Link Functions Reference

3-2
Using the Link Function Reference
These sections provide complete information on each function in the links in
MATLAB Link for Code Composer Studio, in a structured format. Refer to
these pages when you need details about a specific function. For help on a
function, enter

help ccshelp/functionname or help rtdxhelp/functionname

or use the Help desk to access the function reference page.

Contents of Function Reference Pages
Function reference pages are listed in alphabetical order by the function name.
Each entry contains the following information:

• Purpose — describes why you use the block or function.

• Syntax — lists each syntax and option that applies to the function.

• Description — describes what the function does, by presenting all possible
syntax structures for the function. Each syntax in the Syntax section
appears in a description.

• Examples — shows the function in use and demonstrates some of the
parameters and options for the function.

• See Also — lists related blocks and functions. This is an optional category.

Tables of Link Software Functions
Tables of Link Software Functions
For quick reference purposes, the following tables list the functions available
for the links for Code Composer Studio Integrated Development Environment
(CCS IDE) and Real-Time Date Exchange (RTDX). Each table entry includes
the function name as a link to its reference page; whether the function is
overloaded; and a brief description of the function

Table 3-1: Functions Operating on Links for CCS IDE

Function Overloaded Description

activate Change the active file or project in CCS
IDE

add Add a file to the active project in CCS
IDE

animate Run an application on the target
processor until it reaches a breakpoint

build Build the active project in CCS IDE

ccsboardinfo Return information about the boards
and simulators recognized by CCS IDE

ccsdsp Create a link to CCS IDE

cd Change the working directory that CCS
IDE uses

clear Yes Destroys the links to CCS IDE

close Yes Close open files in CCS IDE

delete Remove debug points in files in CCS IDE

dir List the files in the current CCS IDE
working directory

disp Yes Display the properties of a link to CCS
IDE
3-3

3 Link Functions Reference

3-4
display Yes Display the properties of a link to CCS
IDE

get Yes Returns the property values for a link to
CCS IDE.

halt Terminate execution of a process
running on the target processor

info Yes Return information about the target
processor

isreadable Yes Determine if MATLAB can read the
specified memory block

isrtdxcapable Determine whether the target processor
or board supports RTDX

isrunning Test whether the target processor is
executing a process

isvisible Test whether CCS IDE is running on the
PC

iswritable Yes Determine if MATLAB can write to the
specified memory block

load Transfer a program file (*.out, *.obj) to
the target processor

new Create and open a new text file, project,
or build configuration in CCS IDE

open Yes Load a file into CCS IDE

profile Return profile information from running
a DSP/BIOS-enabled program in CCS
IDE

Table 3-1: Functions Operating on Links for CCS IDE (Continued)

Function Overloaded Description

Tables of Link Software Functions
read Retrieve data from memory on the target
processor

regread Return a value from a specified register
on the target processor

reload Resend the most recently loaded
program file to the target processor

regwrite Write a value to a specified register on
the target processor

remove Remove a file from the active CCS IDE
project

reset Start to reset the target processor

restart Restore the program counter to the entry
point for the current program on the
target

resume Restart execution of a stopped or paused
process

run Execute the program loaded on the
target processor

set Yes Set the properties of links for CCS IDE.

symbol Return the most recent program symbol
table from CCS IDE

visible Set the visibility for CCS IDE window

write Write data to memory on the target
processor

Table 3-1: Functions Operating on Links for CCS IDE (Continued)

Function Overloaded Description
3-5

3 Link Functions Reference

3-6
Table 3-2: Functions Operating on Links for RTDX

Function Overloaded Description

address Return the address and memory page for a
symbol.

clear Yes Remove existing links for RTDX and CCS
IDE. Uses a destructor method to eliminate
the link objects.

close Yes Close an open RTDX channel.

configure Define the size and number of RTDX
channel buffers.

disable Disable the RTDX interface, a specified
channel, or all RTDX channels.

disp Yes Display the properties of an RTDX link
(default display).

display Yes Display the properties of an RTDX link.

enable Enable the RTDX interface, a specified
channel, or all RTDX channels.

flush Flush data or messages out of one or more
specified RTDX channels.

get Yes Return the property values for a link for
RTDX.

info Yes Return information about specified RTDX
links.

isenabled Determine whether the RTDX interface or
one or all RTDX channels are enabled for
communications.

isreadable Yes Determine whether MATLAB can read the
specified RTDX channel.

Tables of Link Software Functions
iswritable Yes Determine whether MATLAB can write to
the specified RTDX channel.

msgcount Return the number of messages in a
read-enable RTDX channel.

open Yes Open an RTDX channel to a target
processor.

readmat Read a matrix of data from specified RTDX
channels.

readmsg Read messages from the specified RTDX
channel.

set Yes Set the properties of a link for RTDX.

writemsg Write a message to the target processor.

Table 3-2: Functions Operating on Links for RTDX (Continued)

Function Overloaded Description
3-7

3 Link Functions Reference

3-8
Link Functions—Alphabetical List
The following reference pages list the functions included in the link software.
Each function listing includes a Purpose, Syntax, Description, and Examples
(when needed). Where it is appropriate, a See Also section provides references
to related blocks and functions.

Functions—Alphabetical List
Functions—Alphabetical List 3

activate . 3-13
add . 3-15
addregister . 3-18
address . 3-20
animate . 3-22
assignreturnstorage . 3-23
build . 3-24
cast . 3-27
ccsboardinfo . 3-31
ccsdsp . 3-36
cd . 3-43
cexpr . 3-45
cleanup . 3-49
clear . 3-50
close . 3-51
configure . 3-53
convert . 3-55
copy . 3-58
createobj . 3-59
datatypemanager . 3-75
declare . 3-88
delete . 3-90
deleteregister . 3-92
deref . 3-94
dir . 3-95
disable . 3-96
display . 3-97
enable . 3-99
equivalent . 3-100
execute . 3-101
flush . 3-102
get . 3-104
getinput . 3-108
getmember . 3-111
getoutput . 3-114
-9

-10
gettypeinfo . 3-116
goto . 3-117
halt . 3-121
info . 3-123
insert . 3-126
isenabled . 3-128
isreadable . 3-130
isrtdxcapable . 3-134
isrunning . 3-135
isvisible . 3-137
iswritable . 3-139
list . 3-143
load . 3-152
msgcount . 3-154
new . 3-155
open . 3-158
profile . 3-161
read . 3-168
readbin . 3-178
readhex . 3-179
readmat . 3-180
readmsg . 3-183
readnumeric . 3-186
regread . 3-189
regwrite . 3-192
reload . 3-198
remove . 3-200
reset . 3-201
reshape . 3-202
restart . 3-203
resume . 3-204
run . 3-205
save . 3-209
set . 3-211
symbol . 3-214
visible . 3-216
write . 3-219

Functions—Alphabetical List
writebin . 3-229
writemsg . 3-230
-11

-12

activate
3activatePurpose Make the specified project, file, or build configuration active in CCS IDE

Syntax activate(cc, 'objectname','type')

Description activate(cc,'objectname','type') makes the object specified by
objectname and type the active document window or project in CCS IDE.
While you must include the link cc, it does not identify the project or file you
make active. activate accepts one of three strings for type

To specify the project file, text file, or build configuration, objectname must
contain the full project name with the .pjt extension, or the full pathname and
extension for the text file.

When you activate a build configuration, activate applies to the active project
in CCS IDE. If the build configuration you specify in activate does not exist in
the active project, MATLAB returns an error that the specified configuration
does not exist in the project. Fix this error by using activate to make the
correct project active, then use activate again to select the desired build
configuration.

Examples Create two projects in CCS IDE and use activate to change the active project,
build configuration, and document window:

cc=ccsdsp;
visible(cc,1)

String Description

'project' Makes an existing project in CCS IDE active
(current). You must include the .pjt extension in
objectname.

'text' Makes the specified text file in CCS IDE the active
document window. Include the file extension in
objectname when you specify the file.

'buildcfg' Makes the specified build configuration in CCS
IDE active. Note that build configuration is
similar to project configuration.
3-13

activate
Now make two projects in CCS IDE.

new(cc,'myproject1.pjt')
new(cc,'myproject2.pjt')

In CCS IDE, myproject2 is now the active project, since you just created it.
With two projects in CCS IDE, add a new build configuration to the second
project.

new(cc,'Testcfg','buildcfg')

If you switch to CCS IDE, you see myproject2.pjt in bold lettering in the
project view, signaling it is the active project. When you check the active
configuration list, you see three build configurations—Debug, Release, and
Testcfg. Currently, Testcfg is the active build configuration in myproject2.

Finally, add a text file to myproject1 and make it the active document window
in CCS IDE. In this case, you add the source file for the ADC block.

activate(cc,'myproject1.pjt') % Makes myproject1 the active
project
add(cc,'c6701evm_adc.c')
activate(cc,'c6701evm_adc.c','text')

See Also build, new, remove
3-14

add
3addPurpose Add files to the active project in CCS or add a new typedef

Syntax add(cc,'filename')
info = add(cc.type,'typedefname','datatype')

Description Use add when you have an existing file to add to your active project in CCS. You
can have more than one CCS IDE open at the same time, such as C5000 and
C6000 instances. cc identifies which CCS IDE instance gets the file, and it
identifies your board or target. Note that cc does not identify your project in
CCS—it identifies only your target hardware or simulator. add puts the file
specified by filename in the active project in CCS. Files you add must exist and
be one of the supported file types shown in the next table.

When you add files, CCS puts the files in the appropriate folder in the project,
such as putting source files with the .c extension in the Source folder and
adding .lib files to the Libraries folder. You cannot change the destination
folder in your CCS project. Using add is identical to selecting Project->Add
Files to Project... in CCS IDE.

To specify the file to add, filename must be the full pathname to the file, unless
your file is in your CCS working directory or in a directory on your MATLAB
path. The MATLAB Link for Code Composer Studio searches for files first in
your CCS IDE working directory, then in directories on your MATLAB path.

You can add the following file types to a project through add.

File Types and Extensions Supported by add and CCS IDE

File Type Extensions Supported CCS Project Folder

C/C++ source files .c, .cpp, .cc, .ccx, .sa Source

Assembly source files .a*, .s* (excluding .sa,
refer to C/C++ source
files)

Source

Object and library files .o*, .lib Libraries

Linker command file .cmd Project Name
3-15

add
Use activate to change your active project in CCS IDE or switch to the CCS
IDE and change the active directory within CCS.

info = add(cc.type,'typedefname','datatype') adds the new type
definition typedefname to the type class in cc. Return value info contains the
information about your custom data type. Your new data type typedefname has
type datatype. As long as the cc object exists, the information about your new
typedef exists as well. Including the left side argument is an option. Omitting
the left side argument does not prevent add from making additions to the type
objects.

Examples Create a new project and to it add a source file and a build configuration. To do
this task from MATLAB, use new to make your project in CCS IDE, then use
add to put the required files into your new project.

cc=ccsdsp

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C64127
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

cc.visible(1) % Optional. Makes CCS IDE visible on your desktop
new(cc,'myproject','project');

DSP/BIOS file .cdb* DSP/BIOS Config

Visual Linker Recipe .rcp Replaces the .cmd
file, or goes under
Project Name

File Types and Extensions Supported by add and CCS IDE

File Type Extensions Supported CCS Project Folder
3-16

add
% Now add a C source file

add(cc,'c6701evm_adc.c'); % Adds the source file for the ADC block

In CCS IDE, c6701evm_adc.c shows up in myproject, in the Source folder.
Now add a new build configuration to myproject. After you add the new
configuration, you can see it on the configurations list in CCS IDE, along with
the usual Debug and Release configurations:

new(cc,'Testcfg','buildcfg')

Adding a new type definition to the type object is straightforward:

cc=ccsdsp;
info = add(cc.type, 'mynew typedef','int32');
info =

 type: 'int32'
 size: 1
 uclass: 'numeric'

cc.type

Defined types : Void, Float, Double, Long, Int, Short, Char, mynewtypedef

See Also activate, cd, open, remove
3-17

addregister
3addregisterPurpose Append one or more registers to the list of saved registers stored in the
property savedregs of function objects

Syntax addregister(ff,regname)
addregister(ff,regnamelist)

Description addregister(ff,regname) adds register regname to the list of registers that
get preserved or reverted when a function is finished running. ff identifies the
program function to which the register applies. You can add any register to the
saved registers list.

When you issue the createobj call to create a handle to a function, the
compiler creates the default list of saved registers. When you execute the
function, the compiler saves the registers in the list, runs its process, and after
completing its process, restores the saved registers to their initial state using
the contents of the saved registers.

After a function generates a result, the execution process returns the saved
registers to their initial states and values. When you add a register to the saved
registers list, the added register is restored and saved with the other registers
in the list.

For each processor family, the default list of saved registers changes, as shown
in these sections. The default lists include registers that the compiler saves and
that MATLAB requires for MATLAB Link for Code Composer Studio to operate
correctly.

Default Saved Registers for C28x Processors
AL, AH, AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7, XAR0, XAR1, XAR2,
XAR3, XAR4,XAR5, XAR6, XAR7, SP, T, TL, PL, PH, DP

Default Saved Registers for C54x Processors
AR1, AR6, AR7, and SP (required by MATLAB, not the compiler)

Default Saved Registers for C55x Processors
T0, T1, T2, T3, TRN0, TRN1, AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7,
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7, AC0, AC1, AC2, AC3

Default Saved Registers for C62x and C67x Processors
A0, A2, A6, A7, A8, A9. Also B0, B1, B2, B4, B5, B6, B7, B8, B9. To support
MATLAB requirements, B15 (the stack pointer) gets saved as well.
3-18

addregister
Registers A3, A4, A5, and B3—your function must preserve these but they are
not needed for reading function output.

Default Saved Registers for C64x Processors
A0, A2, A6, A7, A8, A9, A16, A17, A19, A19, A20, A21, A22, A23, A24, A25, A26,
A27, A28, A29, A30, A31. Also B0, B1, B2, B4, B5, B6, B7, B8, B9, B16, B17,
B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31. To
support MATLAB requirements, B15 (the stack pointer) gets saved as well.

Register B15—not required by the compiler, but is required by MATLAB and
is saved.

Registers A3, A4, and A5—function must preserve these but they are needed
for reading function output.

Default Saved Registers for R1x and R2x Processors
R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14,R15

addregister(ff,reglist) appends the register names in reglist to the list
of registers that get preserved when a task is finished. ff identifies the
function to which the register applies. reglist is a cell array that contains the
names of registers on your processor that must be preserved during the
changes that occur during operation.

See Also deleteregister
3-19

address
3addressPurpose Return the address and page for an entry in the symbol table in CCS IDE

Syntax a = address(cc,'symbolstring')

Description a = address(cc,'symbolstring') returns the address and page values for
the symbol identified by 'symbolstring' in CCS IDE. address returns the
symbol from the most recently loaded program in CCS IDE. In some instances
this might not be the program loaded on the target to which cc is linked. By
returning the address and page values as a structure, your programs can use
the values directly. If you provide an output argument, the output a contains
the 1-by-2 vector of [address page]. For address to work, symbolstring must
represent a valid entry in the symbol table. To ensure that address returns
information for the correct symbol, use the proper case when you enter
symbolstring because symbol names are case-sensitive; 'symbolstring' is not
the same as 'Symbolstring'.

If address does not find a symbol table entry that matches symbolstring, the
first cell of a is returned empty. Notice that this function returns only the first
matching symbol in the symbol table. The output argument is a cell array
where each row in a presents the symbol name and address in the table. Each
returned symbol address comprises a two element vector with the symbol page
as the second element. For example, this table shows a few possible elements
of a, and their interpretation.

Examples After you load a program to your target, address lets you read and write to
specific entries in the symbol table for the program. For example, the following
function reads the value of symbol 'ddat' from the symbol table in CCS IDE.

a Array Element Contents of the Specified Element

a{1} String reflecting the symbol name. If address
found a symbol that matches symbolstring, this is
the same as symbolstring. Otherwise this is
empty.

a{2}(1) Address or value of symbol entry.

a{2}(2) Memory page value. For TI C6xxx processors, the
page is 0.
3-20

address
ddatv = read(cc,address(cc,'ddat'),'double',4)

ddat is an entry in the current symbol table. address searches for the string
ddat and returns a value when it finds a match. read returns ddat to MATLAB
as a double-precision value as specified by the string 'double'.

To change values in the symbol table, use address with write:

write(cc.adddress(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

After executing this write operation, ddat contains double-precision values for
π, 12.3, e-1, and sin(π/4). Use read to check the contents of ddat:

ddatv = read(cc,address(cc,'ddat'),'double',4)

MATLAB returns

ddatv =

3.1416 12.3 0.3679 0.7071

See Also load, read, symbol, write
3-21

animate
3animate

Purpose Run an application on the target processor until it reaches a breakpoint

Syntax animate(cc)

Description animate(cc) starts the target application, which runs until it encounters
a breakpoint in the code. At the breakpoint, application execution halts and
CCS Debugger returns data to CCS IDE to update all windows that are not
connected to probe points. After updating the display, the application resumes
execution and runs until it encounters another breakpoint. The
run-break-resume process continues until you stop the application from
MATLAB with the halt function or from CCS IDE.

When you are running scripts or files in MATLAB, you might find that animate
provides a useful way to update the CCS IDE with information as your script
or program runs.

Using animate with multiprocessor boards
When you use animate with a target object cc that comprises more than one
processor,such as an OMAP target, the method applies to each processor in
your cc object. This causes each processor to run a loaded program just as it
does for the single processor case.

See Also halt, restart, run
3-22

assignreturnstorage
3assignreturnstoragePurpose Assign a storage location to property outputvar for a structure or union
returned by a function on C6x processors

Syntax assignreturnstorage(ff,'address',address)

assignreturnstorage(ff,'handle',structure_object)

Description assignreturnstorage(ff,'address',address) sets the outputvar property
of the function object ff. Setting outputvar determines where the process
stores the results of executing the function. To specify the address for the
output, enter address as a numeric value. The keyword address tells MATLAB
that the next argument entry in the syntax is an address.

assignreturnstorage(ff,'handle',structure_object) assigns the return
storage to the structure reference by structure_object. To use this syntax,
structure_object must refer to a structure object. handle tells MATLAB that
the next argument in the list is the name of a handle to a structure object. The
referenced structure contains the address to which you are assigning the
return from the function.

Note assignreturnstorage works only with functions that return structures
or unions. For functions that return other types of data, assignreturnstorage
does not apply. You use assignreturnstorage only with C6x processors.

See Also createobj
3-23

build
3buildPurpose Build the active project in CCS IDE

Syntax build(cc,timeout)
build(cc)
build(cc,'all',timeout)
build(cc,'all')

Description build(cc,timeout) incrementally rebuilds your active project in CCS IDE. In
an incremental build:

• Files that you have changed since your last project build process get rebuilt
or recompiled.

• Source files rebuild when the time stamp on the source file is later than the
time stamp on the object file created by the last build.

• Files whose time stamps have not changed do not rebuild or recompile.

This incremental build is identical to the incremental build in CCS IDE,
available from the CCS IDE toolbar.

After building the files, CCS IDE relinks the files to create the program file
with the .out extension. To determine whether to relink the output file, CCS
IDE compares the time stamp on the output file to the time stamp on each
object file. It relinks the output when an object file time stamp is later than the
output file time stamp.

To reduce the compile and build time, CCS IDE keeps a build information file
for each project. CCS IDE uses this file to determine which file needs to be
rebuilt or relinked during the incremental build. After each build, CCS IDE
updates the build information file.

Note CCS IDE opens a Save As dialog when the requested project build
overwrites any files in the project. You must respond to the dialog before CCS
IDE continues the build. The dialog may not be visible when it opens and CCS
IDE, MATLAB, and other applications can appear to be frozen until you
respond to the dialog. It may be hidden by open windows on your desktop.
3-24

build
To limit the time that build spends performing the build, the optional
argument timeout stops the process after timeout seconds. timeout defines
the number of seconds allowed to complete the required compile, build, and
link operation. If the build process exceeds the time-out period, build returns
an error in MATLAB. Generally, build causes the processor to initiate a
restart even when the period specified by timeout passes. Exceeding the
allotted time for the operation usually indicates that confirmation that the
build was finished was not received before the time-out period passed. If you
omit the timeout option in the syntax, build defaults to the global time-out
defined in cc.

build(cc) is the same as build(cc,timeout) except that when you omit the
timeout option, build defaults to the time-out for build, 1000 s. This time-out
value overrides the default time-out setting for cc.

build(cc,'all',timeout) completely rebuilds all of the files in the active
project. This full build is identical to selecting Project->Rebuild All from the
CCS menubar. After rebuilding all files in the project, build performs the link
operation to create a new program file.

To limit the time that build spends performing the build, optional argument
timeout stops the process after timeout seconds. timeout defines the number
of seconds allowed to complete the required compile, build, and link operation.

If the build process exceeds the time-out period, build returns an error in
MATLAB. Generally, build causes the processor to initiate a restart even
when the period specified by timeout passes. Exceeding the allotted time for
the operation usually indicates that confirmation that the build was finished
was not received before the time-out period passed. If you omit the timeout
option in the syntax, build defaults to the global time-out defined in cc.

build(cc,'all') is the same as build(cc,'all',timeout) except that when
you omit the timeout option, build defaults to the time-out set for build only,
1000 s.

Examples To demonstrate building a project from MATLAB, use CCS IDE to load
a project from the TI tutorials. For this example, open the project file
volume.pjt from the Tutorial folder where you installed CCS IDE. (You can
open any project you have for this example.)
3-25

build
Now use build to build the project:

cc=ccsdsp

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C64127
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

build(cc,'all',20)

You just completed a full build of the project in CCS IDE. On the Build pane in
CCS IDE, you see the record of the build process and the results. Now, make a
change to a file in the project in CCS IDE and save the file. Then rebuild the
project with an incremental build.

build(cc,20)

When you look at the Build pane in CCS IDE, the log shows that the build only
occurred on the file or files that you changed and saved.

See Also activate, isrunning, open
3-26

cast
3castPurpose Change the data type of an object in MATLAB Link for CCS

Syntax objname2 = cast(objname,datatype)
objname2 = cast(objname,datatype,size)

Description objname2 = cast(objname,datatype) returns objname2, a copy of objname,
whose represent, storagepervalue, and wordsize properties are changed so
objname2 supports the data type specified by datatype. Input argument
datatype can be any supported data type. After the cast operation, read or
write operations apply the appropriate data conversion to implement on your
target the data type specified by the represent, storagepervalue, and
wordsize properties of objname2.

The following data types work as input arguments to cast.

datatype String represent Property Value

'double' 'float'

'single' 'float'

'int32' 'signed'

'int16' 'signed'

'int8' 'signed'

'uint32' 'unsigned'

'uint16' 'unsigned'

'uint8' 'unsigned'

'long double' 'float'

'float' 'float'

'long' 'signed'

'int' 'signed'

'char' 'signed'/'unsigned'
3-27

cast
Note pointer and rpointer objects respond differently when you use cast.
Refer to “Using cast with pointer and rpointer Objects” for more information
about the supported data types for pointer or rpointer objects.

Various TI processors restrict the sizes of the data types used by objects in
MATLAB Link for Code Composer Studio. Shown in the next table, the
processor families restrict the valid word sizes for the listed data types.

Using the properties of the objects, you change the word size by changing the
value of the storageunitspervalue property of the object. Note that you

'unsigned long' 'signed'

'unsigned int' 'unsigned'

'unsigned char' 'unsigned'

'Q0.15' 'fract'

'Q0.31' 'fract'

represent
Property Value

C5x Processor Word
Size Limits

C6x Processor Word
Size Limits

'float' 32, 64 bits 32,64 bits

'signed' 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

'unsigned' 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

'binary' 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

'fract'

datatype String represent Property Value
3-28

cast
cannot change the bitsperstorageunit property value, which depends on the
processor and whether the object represents a memory location or a register.

cast applies to any object that has the represent, storagepervalue, and
wordsize properties. function, ccsdsp, and rtdx objects do not use the
represent property and do not support cast.

A note—you could change the properties for objname2 directly with set when
you work with less common data types. Generally, we recommend you use cast
to change the data type for an object, and consider convert as well.

objname2 = cast(objname,datatype,size) returns objname2, a copy of
objname, with the specified data type for the represent, storagepervalue, and
wordsize properties, and the size property value set to size. For bitfield
objects, size is always 1.

Using cast with pointer and rpointer Objects
Working with pointer objects and register pointer (rpointer) objects is
slightly different from using cast with numeric objects.

When you cast a pointer object, the results depend on the data type you specify
to cast to in the syntax:

• When you specify a valid pointer type for your new pointer or rpointer
object, cast creates the new pointer or rpointer object as a pointer type.
Valid pointer data types are datatype *—you include the asterisk to indicate
this is a pointer.

• When you specify a nonpointer data type for your new object, cast creates
a new object that is no longer a pointer and does not access the referent that
the original object accessed. Trying to cast to a nonpointer data type causes
an error in MATLAB. Data types that do not support pointers are

- All C native data types without the asterisk that indicates this is a pointer

- enum (enumerated)

- string

- struct

Examples If your project includes the variables used in the three examples that follow,
try them out to see cast at work. Without the specified variables, the examples
do not run—read the examples to see the input and output from cast.
3-29

cast
Cast the Data Type from int16 to Q0.31
After you create a ccsdsp object, use cast to recast a variable from data type
int16 to Q0.31.

Create the int16 indirectly since you cannot create handles to int16 data types
in one step:

g_int16=createobj(cc,'g_float')
convert(g_int16,'int16)
cast(g_int16,'Q0.31')

Cast the Data Type from signed char to Q0.15
After you create a ccsdsp object, use cast to recast a variable from data type
signed char to Q0.15.

Create the unsigned char from a signed char and cast from there to Q0.15:

g_uchar=createobj(cc,'g_schar')
cast(g_uchar,'Q0.15')

Cast the Data Type from double to uint32
After you create a ccsdsp object, use cast to recast a variable from data type
double to uint32.

Create the double data type variable and cast it to a uint32:

g_double=createobj(cc,'double')
cast(g_double,'uint32')

See Also convert
3-30

ccsboardinfo
3ccsboardinfoPurpose Return information about all boards and simulators known to CCS IDE

Syntax ccsboardinfo
boards = ccsboardinfo

Description ccsboardinfo returns configuration information about each board and
processor installed and recognized by CCS. When you issue the function,
ccsboardinfo returns the following information about each board or
simulator.

Installed Board
Configuration Data

Configuration
Item Name

Description

Board number boardnum The number that CCS assigns to the board or
simulator. Board numbering starts at 0 for the first
board. This is also a property used when you create a
new link to CCS IDE.

Board name boardname The name assigned to the board or simulator. Usually,
the name is the board model name, such as
TMS320C67xx evaluation module. If you are using a
simulator, the name tells you which processor the
simulator matches, such as C67xx simulator. If you
renamed the board during setup, your assigned name
appears here.

Processor number procnum The number assigned by CCS to the processor on the
board or simulator. When the board contains more
than one processor, CCS assigns a number to each
processor, numbering from 0 for the first processor on
the first board. For example, when you have two
recognized boards, and the second has two processors,
the first processor on the first board is procnum=0, and
the first and second processors on the second board
are procnum=1 and procnum=2. This is also a property
used when you create a new link to CCS IDE.
3-31

ccsboardinfo
Each row in the table that you see displayed represents one digital signal
processor, either on a board or simulator. As a consequence, you use the
information in the table in the function ccsdsp to target a selected board in
your PC.

boards = ccsboardinfo returns the configuration information about your
installed boards in a slightly different manner. Rather than returning the table
containing the information, you get a listing of the board names and numbers,
where each board has an associated structure named proc that contains the
information about each processor on the board. For example

boards = ccsboardinfo

returns

boards =

 name: 'C6xxx Simulator (Texas Instruments)'
 number: 0
 proc: [1x1 struct]

where the structure proc contains the processor information for the C6xxx
simulator board:

boards.proc

ans =

 name: 'CPU'
 number: 0
 type: 'TMS320C6200'

Processor name procname Provides the name of the processor. Usually the name
is CPU, unless you assign a different name.

Processor type proctype Gives the processor model, such as TMS320C6x1x for
the C6xxx series processors.

Installed Board
Configuration Data

Configuration
Item Name

Description
3-32

ccsboardinfo
Reviewing the output from both function syntaxes shows that the configuration
information is the same.

When you combine this syntax with the dot notation used to access the
elements in a structure, the result is a way to determine which board to connect
to when you construct a link to CCS IDE. For example, when you are creating
a link to a board in your PC, the dot notation provides the means to set the
target board by issuing the command with the boardnum and procnum
properties set to the entries in the structure boards. For example, when you
enter

boards = ccsboardinfo;

boards(1).name returns the name of your second installed board and
boards(1).proc(2).name returns the name of the second processor on the
second board. To create a link to the second processor on the second board, use

cc = ccsdsp('boardnum',boards(1).number,'procnum',...
boards(1).proc(2).name);

Examples On a PC with both a simulator and a DSP Starter Kit (DSK) board installed,

ccsboardinfo

returns something similar to the following table. Your display may differ
slightly based on what you called your boards when you configured them in
CCS Setup Utility:

Board Board Proc Processor Processor

 Num Name Num Name Type

 --- ---------------------------------- --- ---------------------------------- ----

 1 C6xxx Simulator (Texas Instrum ... 0 CPU TMS320C6200

0 DSK (Texas Instruments) 0 CPU_3 TMS320C6x1x

When you have one or more boards that have multiple CPUs, ccsboardinfo
returns the following table, or one similar to it:

Board Board Proc Processor Processor

 Num Name Num Name Type

 --- ---------------------------------- --- ---------------------------------- ----

 2 C6xxx Simulator (Texas Instrum ... 0 CPU TMS320C6200

 1 C6xxx EVM (Texas Instrum ... 1 CPU_Primary TMS320C6200

 1 C6xxx EVM (Texas Instrum ... 0 CPU_Secondary TMS320C6200
3-33

ccsboardinfo
0 C64xx Simulator (Texas Instru... 0 CPU TMS320C64xx

In this example, board number 1 returns two defined CPUs: CPU_Primary and
CPU_Secondary. Note that the C6xxx does not in fact have two CPUs; we
defined a second CPU for this example.

To demonstrate the syntax boards = ccsboardinfo, this example assumes a
PC with two boards installed, one of which has three CPUs.

Type

ccsboardinfo

at the MATLAB prompt. You get

Board Board Proc Processor Processor

 Num Name Num Name Type

 --- ---------------------------------- --- ---------------------------------- ----

 1 C6xxx Simulator (Texas Instrum ... 0 CPU TMS320C6211

 0 C6211 DSK (Texas Instruments) 2 CPU_3 TMS320C6x1x

 0 C6211 DSK (Texas Instruments) 1 CPU_4_1 TMS320C6x1x

0 C6211 DSK (Texas Instruments) 0 CPU_4_2 TMS320C6x1x

Now type

boards = ccsboardinfo

MATLAB returns

boards=
2x1 struct array with fields

name
number
proc

showing that you have two boards in your PC.

Use the dot notation to determine the names of the boards:

boards.name

returns

ans=
C6xxx Simulator (Texas Instruments)
3-34

ccsboardinfo
ans=
C6211 DSK (Texas Instruments)

To identify the processors on each board, again use the dot notation to access
the processor information. You have two boards (numbered 0 and 1). Board 0
has three CPUs defined for it. To determine the type of the second processor on
board 0 (the board whose boardnum = 0), enter

boards(2).proc(1)

which returns

ans=
name: 'CPU_3'
number: 1
type: 'TMS320C6x1x'

Recall that

boards(2).proc

gives you this information about the board

ans=
3x1 struct array with fields:

name
number
type

indicating that this board has three processors (the 3x1 array).

The dot notation is useful for accessing the contents of a structure when you
create a link to CCS IDE. When you use ccsdsp to create your CCS link, you
can use the dot notation to tell CCS IDE which processor you are targeting.

cc = ccsdsp('boardnum',boards(1).proc(1))

See Also info, ccsdsp
3-35

ccsdsp
3ccsdspPurpose Create a link to CCS IDE

Syntax cc = ccsdsp
cc = ccsdsp('propertyname','propertyvalue',...)

Description cc = ccsdsp returns a handle (or object or link) in cc that MATLAB uses to
communicate with the default processor. In the case of no input arguments,
ccsdsp constructs the object with default values for all properties. CCS IDE
handles the communications between MATLAB and the target CPU. When you
use the function, ccsdsp starts CCS IDE if it is not running. If ccsdsp opened
an instance of the CCS IDE when you issued the ccsdsp function, CCS IDE
becomes invisible after MATLAB Link for Code Composer Studio creates the
new object.

Note When ccsdsp creates the link cc, it sets the working directory for CCS
IDE to be the same as your MATLAB working directory. This can have
consequences when you create files or projects in CCS IDE, or save files and
projects.

Each link to CCS IDE you create comprises two objects—a ccsdsp object and an
rtdx object—that include the following properties.

Object Property Name Property Default Description

ccsdsp object 'apiversion' API version N/A Defines the API
version used to create
the link

'proctype' Processor Type N/A Specifies the kind of
processor on the target
board

'procname' Processor
Name

CPU Name given to the
processor on the board
to which this object
links
3-36

ccsdsp
cc = ccsdsp('propertyname','propertyvalue',...) returns a handle in cc
that MATLAB uses to communicate with the specified processor. CCS handles
the communications between MATLAB and the target CPU.

MATLAB treats input parameters to ccsdsp as property definitions. Each
property definition consists of a property name/property value pair.

'status' Running No Status of the program
currently loaded on the
processor

'boardnum' Board Number 0 Number that CCS
assigns to the board.
Used to identify the
board

'procnum' Processor
number

0 Number the CCS
assigns to a processor
on a board

'timeout' Default
time-out

10.0 s Specifies how long
MATLAB waits for a
response from CCS
after issuing a request

rtdx object 'timeout' Time-out 10.0 s Specifies how long CCS
waits for a response
from the processor
after requesting data

'numchannels' Number of
open channels

0 The number of open
channels using this
link

type object type Defined types
in the object

Void, Float,
Double,
Long, Int,
Short, Char

List of the C types in
the project cc accesses.
Use add to include your
C type definitions to
the list

Object Property Name Property Default Description
3-37

ccsdsp
Two properties of the ccsdsp handle are read only after you create the handle:

• 'boardnum' — the identifier for the installed board selected from the active
boards recognized by CCS. If you have one board, use the default property
value 0 to access the board.

• 'procnum' — the identifier for the processor on the board defined by
boardnum. On boards with more than one processor, use this value to specify
the target processor on the board. On boards with one processor, use the
default property value 0 to specify the processor.

Given these two properties, the most common forms of the ccsdsp method are

cc = ccsdsp('boardnum',value)
cc = ccsdsp('boardnum',value,'procnum',value)

which specify the target board, and processor in the second example, as the
target.

You do not need to specify the boardnum and procnum properties when you have
one board with one processor installed. The default property values refer
correctly to the processor on the board.

Note Simulators count as boards. If you defined both boards and simulators
in CCS IDE, specify the boardnum and procnum properties to connect to
specific boards or simulators. Use ccsboardinfo to determine the values for
the boardnum and procnum properties of your boards and simulators.

Because these properties are read only after you create the handle, you must
set these property values as input arguments when you use ccsdsp. You cannot
change these values after the handle exists. After you create the handle, use
the get function to retrieve the boardnum and procnum property values.

Using ccsdsp with multiple processor targets
When you create ccsdsp objects that access targets that contain more than one
processor, such as the OMAP1510 platform, ccsdsp behaves a little differently.

For each of the ccsdsp syntaxes above, the result of the method changes in the
multiple processor case, as follows.
3-38

ccsdsp
cc = ccsdsp
cc = ccsdsp('propertyname',propertyvalue)
cc = ccsdsp('propertyname',propertyvalue,'propertyname',...
propertyvalue)

In the case where you do not specify a board or processor:

cc = ccsdsp
Array of CCSDSP Objects:
 API version : 1.2
 Board name : OMAP 3.0 Platform Simulator [Texas
Instruments]
 Board number : 0
 Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)
 Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Where you choose to identify your target as an input argument to ccsdsp, for
example, when your target board contains two processors:

cc = ccsdsp('boardnum',2)
Array of CCSDSP Objects:
 API version : 1.2
 Board name : OMAP 3.0 Platform Simulator [Texas
Instruments]
 Board number : 2
 Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)
 Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

cc returns a two element object handle with cc(1) corresponding to the first
processor and cc(2) corresponding to the second.

You can include both the board number and the processor number in the
ccsdsp syntax, as shown here:

cc = ccsdsp('boardnum',2,'procnum',[0 1])
Array of CCSDSP Objects:
 API version : 1.2
 Board name : OMAP 3.0 Platform Simulator [Texas
Instruments]
 Board number : 2
 Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)
 Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Enter procnum as either a single processor on the board (a single value in the
input arguments to specify one processor) or a vector of processor numbers, as
shown in the example, to select two or more processors.
3-39

ccsdsp
Support Co-emulation
Co-emulation, defined by Texas Instruments to mean simultaneous debugging
of two or more CPUs, allows you to coordinate your debugging efforts between
two or more processors within one device. Efficient development with
OMAPTM hardware requires co-emulation support. Instead of creating one cc
object when you issue the command

cc = ccsdsp

or your target that has multiple processors, the resulting cc object comprises a
vector of cc objects cc(1), cc(2), and so on, each of which accesses one processor
on your target device, say an OMAP1510. When your target has one processor,
cc is a single object. With a multiprocessor target, the cc object returns the new
vector of objects. For example, for board 2 with two processors,

cc = ccsdsp

returns the following information about the board and processors:

cc = ccsdsp('boardnum',2)
Array of CCSDSP Objects:
API version : 1.2
 Board name : OMAP 3.0 Platform Simulator [Texas
Instruments]
 Board number : 2
 Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)
 Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Checking the existing boards shows that board 2 does have two processors:

ccsboardinfo

Board Board Proc Processor Processor
Num Name Num Name Type
 --- ---------------------------------- --- ----------------------------------
2 OMAP 3.0 Platform Simulator [T ... 0 MPU TMS470R2x
2 OMAP 3.0 Platform Simulator [T ... 1 DSP TMS320C550
1 MGS3 Simulator [Texas Instruments] 0 CPU TMS320C5500
0 ARM925 Simulator [Texas Instru ... 0 CPU TMS470R2x

Examples On a system with three boards, where the third board has one processor and
the first and second boards have two processors each, the function

cc = ccsdsp('boardnum',1,'procnum',0);
3-40

ccsdsp
returns a handle to the first processor on the second board. Similarly, the
function

cc = ccsdsp('boardnum',0,'procnum',1);

returns a handle to the second processor on the first board.

To access the processor on the third board, use

cc = ccsdsp('boardnum',2);

which sets the default property value procnum=0 to connect to the processor on
the third board.

When you use get with the object, MATLAB returns the properties for the
object, and the property values.

cc = ccsdsp
CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 1
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

get(cc)
 rtdx: [1x1 rtdx]
 apiversion: [1 2]
 ccsappexe: 'D:\Applications\ti\cc\bin\'
 boardnum: 1
 procnum: 0
 type: [1x1 type]
 timeout: 10
 page: 0

cc.type % Returns information about the type object
3-41

ccsdsp
 Defined types : Void, Float, Double, Long, Int, Short, Char

See Also get, ccsboardinfo, createobj, set
3-42

cd
3cdPurpose Change the CCS IDE working directory

Syntax cd(cc,'directory')
wd = cd(cc,'directory')
cd(cc,pwd)

Description cd(cc,'directory') changes the CCS IDE working directory to the directory
identified by the string dir. For the change to take effect, dir must refer to an
existing directory. You can give the directory string either as a relative
pathname or an absolute pathname including the drive letter. CCS IDE applies
relative pathnames from the current working directory.

wd = cd(c,'directory') returns the current CCS IDE working directory in
wd.

Using cc to change the CCS IDE working directory does not affect your
MATLAB working directory or any MATLAB paths. Use the following function
syntax to set your CCS IDE working directory to match your MATLAB working
directory.

cd(cc,pwd) where pwd calls the MATLAB function pwd that shows your
present MATLAB working directory and changes your current CCS IDE
working directory to match the pathname returned by pwd.

Examples When you open a project in CCS IDE, the folder containing the project becomes
the current working folder in CCS IDE. Try opening the tutorial project
volume.mak in CCS IDE. volume.mak is in the tutorial files from CCS IDE.
When you check the working directory for CCS IDE in MATLAB, you see
something like the following result

wd=cd(cc)

wd =

D:\ticcs\c6000\tutorial\volume1

where the drive letter D may be different based on where you installed CCS
IDE.

Now check your MATLAB working directory:
3-43

cd
pwd

ans =

J:\bin\win32

Your CCS IDE and MATLAB working directories are not the same. To make
the directories the same, use the cd(cc,pwd) syntax:

cd(cc,pwd) % Set CCS IDE to use your MATLAB working directory.
pwd % Check your MATLAB working directory.

ans =

J:\bin\win32

cd(cc) % Check your CCS IDE working directory.

ans =

J:\bin\win32

You have set CCS IDE and MATLAB to use the same working directory.

See Also dir, load, open
3-44

cexpr
3cexprPurpose Execute C or General Extension Language (GEL) expressions on the target

Syntax result = cexpr(cc,'expression',timeout)
result = cexpr(cc,'expression')

Description result = cexpr(cc,'expression',timeout) executes the specified
expression on the target processor referred to by cc and returns a result. If your
program includes data in complex data structures and arrays, cexpr offers one
way to access the data.

To run cexpr on your target, you must load a program to the processor. Your
target processor does not need to be running the loaded program to execute
cexpr. In operation cexpr is equivalent to using the CCS Command Line
dialog. Refer to your CCS documentation for more information about using the
command line in CCS.

When you place single quotation marks around the expression argument,
MATLAB ignores the enclosed string, passing it to your target. The target
processor evaluates the expression and returns the result to MATLAB. Any
part of the expression argument that is not in single quotation marks gets
evaluated by MATLAB and sent to the target processor along with the quoted
portion. Using single quotation marks, you can combine MATLAB, GEL, and C
expressions within one cexpr command so that MATLAB sets a value on the
target. The target uses the value and returns the result to your MATLAB
workspace. Refer to “Examples” for a code example that mixes C and MATLAB
functions in one command.

After you execute the function, MATLAB waits timeout seconds for CCS to
confirm successful completion of the operation. If the wait exceeds timeout
seconds, MATLAB returns an error. Often, the time-out error means the
confirmation was delayed but the operation succeeded.

Enter expression as a string in single quotation marks defining either a
C expression, a GEL command, or a combination of both C and GEL. CCS
defines the syntax for expression as either

• A string with C syntax, whose variables reside in the local scope of the target
processor

• A routine mapped to GEL functions defined in the current CCS project
3-45

cexpr
result = cexpr(cc,'expression') is the same as the preceding syntax
except the timeout value defaults to the global time-out in cc. Use get(cc) to
determine the global time-out value.

When you use cexpr, a few points can help you work effectively:

• cexpr returns a result in MATLAB when you use a C statement as the
expression argument. In the first example syntax in “Examples”,
result = cexpr(cc,'x.a'), MATLAB returns result = the value of x.a on
the target. In more concrete form, the syntax
result = cexpr(cc,'x.b=10') sets x.b to 10 on the target and returns
result = 10 to your MATLAB workspace.

• When your expression arguments are GEL functions, cexpr does not return
results to MATLAB.

• Combining C and MATLAB expressions requires that you use single
quotation marks around the C expressions to isolate them from the MATLAB
interpreter. MATLAB performs the functions it understands and then
passes the rest to the target for evaluation. The target returns the result to
MATLAB.

• Pay attention to the scope of the program you are accessing. Only variables
within the current scope of the program in CCS and on the target respond to
cexpr. To access variables using cexpr, the variables must be either global
or within the current scope. When you try to read or write to a variable
outside the current scope, MATLAB returns errors like the following:
??? EvalC: identifier not found: variablename.
??? EvalC: line(1), unexpected token: variablename.

Generally, variables within the program main are available without extra
effort. To get to variables defined locally in subprograms, use breakpoints
and the runtohalt input option in run to set your program to the right scope,
then use cexpr to return the information.

For more information on GEL and GEL files, refer to your CCS documentation.

Examples cexpr covers a broad range of uses. To introduce some of the possibilities, the
following examples use both the C expression and GEL expression forms.
3-46

cexpr
Because executing the examples requires that specific variables and functions
exist on the target, you cannot execute the code shown.

 cexpr Syntax Description

result = cexpr(cc,'x.a') Returns the value of field a in structure x
stored on your target. For this example,
expression is x.a and result contains the
value stored in x.a on the target.

result = cexpr(cc,'StartUp()') Executes the GEL function StartUp on the
target processor. expression is 'StartUp', a
function in the GEL file that loads each
time you start CCS. Note that GEL function
names are case sensitive — StartUp is not
the same as startup. In this example,
result is NULL or empty because GEL
functions do not generate return values. Do
not use an output argument with GEL
expressions as input arguments.

result = cexpr(cc,'x.b = 10') Sets and returns the value of the field b in
structure x. Here the assignment statement
in single quotation marks replaces
expression. x.b must be a structure in
memory on your target and in the current
program scope. After execution, result
contains the value 10 returned from the
target.

result = cexpr(cc,['x.c[2] =' int2str(z)]) Sets the value of x.c[2] to the string
represented by integer z. In MATLAB,
result contains the value stored in x.c[2]
as returned from the target. Notice that the
C expression is in single quotation marks,
and the MATLAB int2str is not. Using
single quotation marks directs MATLAB to
ignore the C string that applies to the
target processor and to evaluate int2str.
3-47

cexpr
A note about the final example — the variable z must be in your MATLAB
workspace for int2str to work. In contrast, x.c[2] defines a value on your
target, not in MATLAB.

See Also address, read, write
3-48

cleanup
3cleanup

Purpose Return CCS to the state before running the function

Syntax cleanup(ff)

Description cleanup(ff) returns CCS to the state it was in before running or executing the
function accessed by ff. After cleanup, the saved registers for your program are
restored to their state before you ran ff. Using cleanup is entirely optional
after run or execute.

See Also execute, run
3-49

clear
3clearPurpose Remove links to CCS IDE and RTDX interface, or clear type entries in type
objects

Syntax clear(cc)
clear('all')
clear(cc.type,'all')
clear(cc.type,typedefname)

Description clear(cc) clears the link associated with cc. This is the last step in any
development effort that uses links. Clear links that you no longer need for your
work to avoid unforeseen problems. Calling clear executes the object
destructors that delete the link object and all associated memory and
resources.

clear('all') clears all existing links to CCS IDE and RTDX interface. This is
the final step in any development process that uses links. Clear links that you
no longer need for your work to avoid unforeseen problems. Calling clear with
the 'all' option executes the object destructors to delete all the link objects and
all associated memory and resources.

Note If a link exists when you close CCS IDE, the application does not close.
Microsoft Windows moves it to the background (it becomes invisible). Only
after you clear all open links to CCS IDE, or close MATLAB, does closing CCS
IDE actually close the application. You can check to see if CCS IDE is running
by checking the Microsoft Windows Task Manager.

clear(cc.type,'all') clears all user-defined type entries in the type object
obj.

clear(cc.type,typedefname) clears the information on the specified
user-defined type entry typedefname in the type object obj.

See Also add, ccsdsp, close, disable, gettypeinfo
3-50

close
3closePurpose Close files in CCS IDE or an open RTDX channel

Syntax close(cc,'filename','type')
close(rx,'channel1','channel2',...)
close(rx,'channel')

Description close(cc,'filename','type') closes the file in CCS IDE identified by
filename of type 'type'. type identifies the type of file to close. This can be
either project files when you use 'project' for the type option, or text files
when you use 'text' for the type option. To close a specific file in CCS IDE,
filename must match exactly the name of the file to close. If you replace
filename with 'all', close terminates every open file whose type matches the
type option. File types recognized by close include these extensions.

When you replace filename with the null entry [], close shuts the current
active file window in CCS IDE. When you specify 'project' for the type option,
it closes the active project.

Note close does not save files before shutting them. Closing files can result
in lost data if you have changed the files since you last saved them. Use save
to ensure that your changes are preserved before you close files that are open.

close(rx,'channel1','channel2',...) closes the channels specified by the
strings channel1, channel2, and so on as defined in rx.

close(rx,'channel') closes the specified channel. When you set channel to
'all', this function closes all the open channels associated with rx.

To avoid conflicts, do not name channels “all” or “ALL.”

type String Affected files

'project' Project files with the .pjt extension.

'text' All files with these extensions —.a*, .c, .cc, .ccx,
.cdb, .cmd, .cpp, .lib, .o*, .rcp, and .s*. Note that
'text' does not close .cfg files.
3-51

close
Examples Using close with Files and Projects
To clarify the different close options, here are six commands that close open
files or projects in CCS IDE.

Using close with RTDX
When you plan to use RTDX to communicate with a target, you open and
enable channels to the board and processor. For example, to communicate with
the processor on your installed board, you use open to set up a channel, as
follows:

cc = ccsdsp('boardnum',1,'procnum',0)
rx=cc.rtdx % Create an alias to the RTDX portion of this link.
open(rx,'ichan','w') % Open a channel for write access.
enable(rx,'ichan') % Enable the open channel for use.

After you finish using the open channel, you must close it to avoid difficulties
later on.

close(rx,'ichan')

Or to close all open channels, you could use

close(rx,'all')

See Also disable, open

Command Result

close(cc,'all','project') Close all open projects in
CCS IDE.

close(cc,'my.pjt','project') Close the project my.pjt.

close(cc,[],project') Close the active project.

close(cc,'all','text') Close all open text files. This
includes source file, libraries,
command files, and others.

close(cc,'my_source.cpp','text') Close the text file my_source.cpp.

close(cc,[],'text') Close the active file window.
3-52

configure
3configurePurpose Define the size and number of RTDX channel buffers

Syntax configure(rx,length,num)

Description configure(rx,length,num) sets the size of each main (host) buffer, and the
number of buffers associated with rx. Input argument length is the size in
bytes of each channel buffer and num is the number of channel buffers to create.

Main buffers must be at least 1024 bytes, with the maximum defined by the
largest message. On 16-bit processors, the main buffer must be four bytes
larger than the largest message. On 32-bit processors, set the buffer to be eight
bytes larger that the largest message. By default, configure creates four,
1024-byte buffers. Independent of the value of num, CCS IDE allocates one
buffer for each processor.

Use CCS to check the number of buffers and the length of each one.

Examples Create a default link to CCS and configure six main buffers of 4096 bytes each
for the link.

 cc=ccsdsp % Create the CCS link with default values.

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

rx=cc.rtdx % Create an alias to the rtdx portion.

RTDX channels : 0

configure(rx,4096,6) % Use the alias rx to configure the length
% and number of buffers.
3-53

configure
After you configure the buffers, use the RTDX tools in CCS IDE to verify the
buffers.

See Also readmat, readmsg, write, writemsg
3-54

convert
3convertPurpose Change the represent property for an object from one data type to another

Syntax convert(objname,datatype)
convert(objname,datatype,size)

Description convert(objname,datatype) returns objname with the represent property
changed to the data type specified by datatype. Input argument datatype can
be any supported data type. After you change the data type specified in
represent, read or write operations apply the appropriate data conversion to
implement on the target the data type specified by the represent property.

Note pointer and rpointer objects respond differently when you use
convert. Refer to “Using convert with pointer and rpointer Objects” for more
information about the supported data types for pointer or rpointer objects
and how convert behaves with different data types.

The following data types work as input arguments to convert.

datatype String represent Property Value

'double' 'float'

'single' 'float'

'int32' 'signed'

'int16' 'signed'

'int8' 'signed'

'uint32' 'unsigned'

'uint16' 'unsigned'

'uint8' 'unsigned'

'long double' 'float'

'float' 'float'
3-55

convert
Various TI processors restrict the sizes of the data types used by objects in
MATLAB Link for Code Composer Studio. Shown in the next table, the
processor families restrict the valid word sizes for the listed data types.

Using the properties of the objects, you change the word size by changing the
value of the storageunitspervalue property of the object. Note that you
cannot change the bitsperstorageunit property value, which depends on the
processor and whether the object represents a memory location or a register.

'long' 'signed'

'int' 'signed'

'char' 'signed'/'unsigned'

'unsigned long' 'signed'

'unsigned int' 'unsigned'

'unsigned char' 'unsigned'

'Q0.15' 'fract'

'Q0.31' 'fract'

datatype String represent Property Value

Word size limits for supported processors

represent
Property Value

C2x C54 C55 C6x

'float' 32 bits 32 bits 32 bits 32, 64 bits

'signed' 16, 32 bits 16, 32 bits 16, 32, 40, 64
bits

8, 16, 32, 40,
64 bits

'unsigned' 16, 32 bits 16, 32 bits 16, 32, 40, 64
bits

8, 16, 32, 40,
64 bits

'fract' 16, 32bits 16, 32 bits 16, 32 16, 32 bits
3-56

convert
Pointer objects, both data and numeric, usually use fewer than 32 bits, such as
22 or 23 bits, but are incorporated in 32-bit words.

convert applies to any object that has the represent property. function,
ccsdsp, and rtdx objects do not use the represent property and do not support
convert.

convert(objname,datatype,size) returns objname with the specified data
type for the represent property, and the size property value set to size.

Using convert with pointer and rpointer Objects
Working with pointer objects and register pointer (rpointer) objects is
slightly different from using convert with numeric objects.

Note convert does not support pointers to void, that is, pointers of the form
void *. Before you convert a pointer to void, change the pointer to a valid data
type, such as int * or char *.

When you convert a pointer object, the results depend on the data type you
specify to convert to in the syntax:

• When you specify a valid pointer type for your converted pointer or
rpointer object, convert changes the data type of the pointer and it remains
a pointer.

• When you specify a nonpointer data type for your converted object, convert
changes the referent or regstring properties of your pointer object,
changing the data type of the referent (the value the pointer refers to) and
your object is no longer a pointer. Therefore, use convert to change pointer
or rpointer objects to nonpointer objects. You can convert to any data type,
such as:

- All C native data types without the asterisk that indicates this is a pointer

- enum (enumerated)

- string

- struct

See Also cast
3-57

copy
3copyPurpose Make a copy of an object

Syntax objname2 = copy(objname)

Description objname2 = copy(objname) returns objname2, which is a copy of the input
object specified by objname. All objects in the MATLAB Link for Code
Composer Studio support the copy function. Note that objname2 is
independent of the original; it is not an alias to the original objname. When you
change a property of objname2, you are not changing the same property in
objname.

See Also createobj
3-58

createobj
3createobjPurpose Create MATLAB objects that represent embedded data or functions in
a program on your target

Syntax objname = createobj(cc,'symbolname');
objname = createobj(cc,'symbolname','option');
objname = createobj(cc,'functionname','function','funcdecl',...

'function_declaration_string);
objname = createobj(cc,functionname,'function','allocate',...

{'input',value1,'input2',value2, });

Description objname = createobj(cc,'symbolname') makes an object in your MATLAB
workspace named objname. Your new object contains information about the
program symbol defined by symbolname. To use createobj successfully, you
must have loaded a .out file to your target in CCS, and the symbol must be in
the current symbol table in CCS.

symbolname can be any variable name or function name. By default, the
embedded variable object returned accesses a variable within the current
program scope.

Depending on the variable type and the storage used (register, memory,
structure, function) for the variable, createobj generates an object that is one
of the following kinds of objects:

• Memory object—access any symbol that resides in DSP memory

• Register object—access any symbols that reside in DSP registers

• Structure object—container class that accesses any symbol stored as
a C struct type or C union type

• Function object—access any callable C function or assembly function that
has a C prototype

Memory Objects
You do not create memory objects directly. Rather, you use createobj to make
objects that are derived classes of memory objects:

• Numeric class objects—objects that access primitive data type variables,
such as floats, ints, and shorts.

Numeric class objects also have derived classes:
3-59

createobj
- Pointer class objects—objects that access pointer data types (unsigned
integers)

- Enum class objects—objects that access enumerated data types (integers)

- String class objects—objects that access string data types (characters)

• Bitfield class objects—objects that access bitfield data types

Register Objects
Like memory objects, you cannot instantiate a register object directly. Using
createobj, you create a derived class object that accesses variables stored in
registers on the processor.

• Rnumeric class objects—objects that access primitive data type variables,
such as floats, ints, and shorts

Rnumeric class objects have derived classes just like numeric objects:

- Rpointer class objects—objects that access pointer data types (unsigned
integers)

- Renum class objects—objects that access enumerated data types (integers)

- Rstring class objects—objects that access string data types (characters)

It should be clear that register objects differ from memory objects only in the
kind of data storage they access—registers versus memory locations.
Otherwise, many of the properties and methods of the two object classes are the
same.

Structure Objects
Acting as a container class, structure objects hold either memory objects or
register objects, as defined in the descriptions of both objects. Unlike memory or
register objects, you create structure objects directly when you use
createobj to access a C struct or C union data type variable.

Function Objects
When you create an object that accesses a C function in your program,
createobj returns a function object, whose properties and methods provide
information about and the ability to manipulate the target function. Your
target can be any function in your code, whether a library function, a
subprogram in your code, or a function you create from the MATLAB command
line.
3-60

createobj
To create objects for local variables, the program counter (PC) must be located
within the function that contains the local variable of interest. Note also the
static variables for which you are creating objects must be within the current
scope as well.

To increase the accuracy of the information about global symbols in your
project, use run, as shown here, to position the PC to the start of main in your
application in CCS.

run(cc,'main')

Note that symbolname can be the name of a function in your target code. Thus,
symbolname can refer to data or a function present on the target.

symbolname can be either a static variable or a global variable.

objname = createobj(cc,'symbolname','option') lets you declare more
information about symbolname, such as whether it represents a static or global
variable. Use one of the following strings to declare the type for symbolname in
option:

• static—declares that symbolname refers to a static variable in your code.

• local—declares the symbol to be a local variable in your code.

• global—declares that symbolname refers to a global variable in your code.

• function—declares that symbolname refers to a function in your code. Refer
to the next syntax for more information about this optional keyword.

objname = createobj(cc,'functionname','function','funcdecl',...
'function_declaration_string) creates a function object objname that
accesses the function defined by function_declaration_string. Use the
optional keywords function and funcdecl to specify that you are creating
a function object, and the declaration string follows. This syntax is required
to create function objects that access library functions, unless you use declare
with an existing function object to provide the function declaration to
MATLAB.

Function Object Details
Working with function objects is more complicated than working with the
other object classes. A number of limitations and considerations apply when
you create objects that access functions in your project.
3-61

createobj
createobj works without modification for the following kinds of functions:

• Functions you write in C.

• Functions you write in assembly but for which you provide C prototypes. One
example of this kind is library functions that you call from your C programs
in your project.

Using createobj to construct an object that accesses a function of the kind
listed causes MATLAB to search for the function declaration string in your
project. When MATLAB finds the prototype, it uses the declaration to create
the information it needs to be able to run the function from MATLAB, including

• Objects that access the input parameters for the function

• Objects that access the output parameter for the function

• Storage locations and addresses for the function

If MATLAB does not find the function, it creates the function object anyway,
without the information it needs to run the function, and returns an error.

To respond to the error and provide MATLAB the information it needs, use
declare to provide the declaration string to MATLAB.

You cannot create function objects for these kinds of functions:

• Assembly functions that do not have C prototypes

• Functions where the number of input arguments changes

• Functions that include non-ANSI C code

When you create a function object to access one of the above unsupported
kinds, MATLAB returns an error that it could not find the function declaration.

Allocating Memory For Function Objects
To allocate memory buffers for function objects that you create, use

objname = createobj(cc,functionname,'function','allocate',...
{'input',value1,'input2',value2, });

which lets you set aside memory for each function input, called input1, input2,
and so on in the syntax. createobj assigns value1 and value2 to input1 and
input2. allocate used here as a keyword specifies that this createobj syntax
should perform memory allocation. So, to create memory buffers and assign
3-62

createobj
values (12, 8, and 15) to three input variables for a function named filter, use
the following syntax for createobj:

objname = createobj(cc,'filter','function','allocate',...
{'input1',12,'input2',8,'input3',15});

Using Library Functions
Library functions present a special case of functions for MATLAB Link for
Code Composer Studio. createobj cannot find function declaration strings for
library functions that you use in your project. While createobj does create the
function object, it does not populate the function object with the information
that enables MATLAB to run the target function. For library functions you
must use declare to define explicitly the function declaration for objects that
access library functions. Or, when you create the function object, use the syntax

objname = createobj(cc,'functionname','function','funcdecl',...
'function_declaration_string);

that passes the declaration string to MATLAB at creation time.

Examples The following examples cover many situations you may encounter when you
create function objects:

• Run a C function.

• Run a library function.

• Run a function that includes a custom data type.

• Run code generated by the Real-Time Workshop.

• Run a function that uses input vectors.

Unless you have project code that supports the functions used here you cannot
run these examples. They are for inspection only.

These examples refer to four functions—sin_taylor, dotprod, adotprod, and
cdotprod. Here is the code for sin_taylor.

• sin_taylor
/*--*
 * Taylor Series expansion of sin function - Fixed Point
 * Limitations: input range: -pi <x <pi;
 *
 * Input Datatype is:
3-63

createobj
 * Q2.13 (or MATLAB sfix16_En13), scale factor = 2^13
 * Output Datatype is:
 * Q1.14 (or MATLAB sfix16_En14), scale factor = 2^14
 *
 * Taylor Expansion of sin function (first 4 terms)
 * sin(x) =(approx) x[1 - (x^2/6)*[1 + (x^2/20)*[1 - (x^2/42)]]]

---/
#define SFIX32_EN26_VAL_1 67108864 // Integer equivalent of
1.0 in Q5.26
#define SFIX32_EN28_VAL_1 268435456 // Integer equivalent of
1.0 in Q3.28
#define SFIX32_EN30_VAL_1 1073741824 // Integer equivalent of
1.0 in Q1.30

short sin_taylor(short x)
{

// Define 16/32 bit local variables depending on processor
#if INT_MAX == 0x7FFFFFFF
int acc,a1,a2,a3,xpow;
#elif LONG_MAX == 0x7FFFFFFF
long acc,a1,a2,a3,xpow;
#endif

xpow = x*x; // x^2 sfix32_En26

 a1 = xpow/42; // x^2/42 sfix32_En26
 a2 = xpow/20; // x^2/20 sfix32_En26
 a3 = xpow/6; // x^2/6 sfix32_En26

 acc = SFIX32_EN26_VAL_1 - a1;
 acc >>= 11;
 acc *= (a2>>11);

 acc = SFIX32_EN30_VAL_1 - acc;
 acc >>= 14;
 acc *= (a3>>14);
3-64

createobj
 acc = SFIX32_EN28_VAL_1 - acc;
 acc >>= 11;
 acc *= x;

 return (acc>>16);
}

Run a Standard C Function
In this example, we run function sin_taylor that computes the value for the
sine of an input value. This function accepts one input, x (using data type
short), and returns a short.

To get the correct values, the input data must be converted to Q16.13 format
before passing to the function. After execution, the output value must be
converted from Q16.14 to decimal representation.

Create a ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % wait for hardware reset to complete before proceeding

Run to start of main to ensure that your global variables are initialized:

run(cc,'main',1000);

Create a function object for sin_taylor:

ff = createobj(cc,'sin_taylor')
inputdata = 0.5; % input value to be used

Set value of input x:

x_obj = getinput(ff,'x');
write(x_obj,inputdata* 2^13);

Run the function:

outputdata = run(ff);

Run a Library Function
For a library function, you pass the declaration string explicitly through
declare.
3-65

createobj
This example runs the function dotprod that computes the dot product of two
arrays. This function requires three inputs:

• x—a pointer to a vector of shorts

• y—a pointer to a vector of shorts

• n—the size of x and y vectors

We use the global variables a for input x, b for input y, and 4 for input nx (since
a and b are four-element vectors). The function returns a short.

Create a ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main to ensure that you initialize the global variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % global buffer for 'x'
b_addr = address(cc,'b'); % global buffer for 'y'

Create the function object for the library function dotprod:

ff = createobj(cc,'dotprod')

The previous step yields an incomplete function object ff because library
functions always require that you provide the function declaration explicitly,
as follows:

declare(ff,'decl','int dotprod (short *x, short *y, int nx)')

Set the value for the input parameter x:

x_obj = getinput(ff,'x');
write(x_obj,a_addr(1));
xRef_obj = deref(x_obj);
reshape(xRef_obj,4);
x_inputval = read(xRef_obj) % Verify 'y' referent value

Set the value for y, the second input parameter:

y_obj = getinput(ff,'y');
write(y_obj,b_addr(1));
3-66

createobj
yRef_obj = deref(y_obj);
reshape(yRef_obj,4);
y_inputval = read(yRef_obj) % Verify 'y' referent value

Pass the value for nx to the function:

nx_obj = getinput(ff,'nx');
write(nx_obj,4);
nx_inputval = read(nx_obj) % Verify 'nx' value

Now run the function:

run(ff);

Run a Function That Has a Typedef in the Prototype
Having custom data types in your function declaration can cause problems
when you run the functions from MATLAB.

Case 1—Running a Function That Has a Typedef in the Function Prototype
This example runs the function cdotprod that computes the dot product of two
matrices. This function requires three inputs:

• x—a pointer to a vector of shorts

• y—a pointer to a vector of shorts

• n—the size of x and y vectors

Both n and the return argument are defined as data type INT, a custom data
type defined in the source code.

We use the global variables a for input x, b for input y, and 4 for input n (since
a and b are four-element vectors). The function returns a short.

Create a ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main to ensure that CCS initializes all of the global variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for x
b_addr = address(cc,'b'); % Global buffer for y
3-67

createobj
Create a function object for the library function cdotprod:

ff = createobj(cc,'cdotprod')

The previous call to createobj yields an incomplete function object because the
function declaration includes an unresolved typedef—the type INT. To resolve
this error, add the custom data type INT to the type object and use declare to
pass the function declaration to MATLAB:

add(cc.type,'INT','int'); % A warning mentions that data type
% INT cannot be resolved.

declare(ff,'decl','INT cdotprod (short x[], short y[], INT n)')

Set values for the inputs x, y, and n, and run the function, passing the input
values in the run syntax. Input x is a pointer so pass an address. Input y is a
pointer as well, so pass another address. Input n is an integer that specifies the
size of x and y:

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

Case 2—A Second Approach to Solving the Typedef Problem
We are going to run the function cdotprod which computes the dot product of
two matrices. This function accepts three inputs:

• x—a pointer to a vector of shorts

• y—a pointer to a vector of shorts

• n—the size of x and y vectors

We use the global variable a for input x, b for input y, and 4 for input n (since
a and b are four-element vectors). The function returns a short.

Create ccsdsp link:

cc = ccsdsp;
reset(cc);
Pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main to ensure that CCS initializes all of the global variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for 'x'
b_addr = address(cc,'b'); % Global buffer for 'y'
3-68

createobj
Create function object for library function cdotprod:

ff = createobj(cc,'cdotprod')

Again createobj generates an incomplete function object because of the
unresolved data type INT in the function declaration. In this case, fix the
problem by adding the custom data type INT to the type object and create the
object ff again, instead of using declare to pass the function declaration to
MATLAB:

add(cc.type,'INT','int'); % Warning mentioned that data type
% INT cannot be resolved.

ff = createobj(cc,'cdotprod')

Set values for the inputs x, y, and n, and run the function, passing the input
values in the run syntax. Input x is a pointer so pass an address. Input y is a
pointer as well, so pass another address. Input n is an integer that specifies the
size of x and y:

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

Case 3—A Third Approach to Solving the Typedef Problem
Once more we are going to run the function cdotprod which computes the dot
product of two matrices. This function accepts three inputs:

• x—a pointer to a vector of shorts

• y—a pointer to a vector of shorts

• n—the size of x and y vectors

We use the global variable a for input x, b for input y, and 4 for input n (since
a and b are four-element vectors). cdotprod returns a short.

Create ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % wait for hardware reset to complete before proceeding

Run to start of main to ensure that CCS initializes all of the global variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for x
b_addr = address(cc,'b'); % Global buffer for y
3-69

createobj
Create a function object for the library function cdotprod:

ff = createobj(cc,'cdotprod')

This attempt to create a new function object ff results in an incomplete
function object because MATLAB could not resolve the data type INT in the
function declaration. In this approach to overcoming the unresolved type error,
use declare to pass to MATLAB a version of the cdotprod function declaration
that does not include the offending type INT—you do not need to add the
typedef to the type object:

declare(ff,'decl','int cdotprod (short x[], short y[], short n)')

Notice that the data types for the return argument and for n now specify int,
Set values for the inputs x, y, and n, and run the function, passing the input
values in the run syntax. Input x is a pointer so pass an address. Input y is a
pointer as well, so pass another address. Input n is an integer that specifies the
size of x and y:

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

Run a Function Generated by the Real-Time Workshop
We are going to run the function 'mwdsp_fir_df_dd' which applies a filter to
a noisy input signal. This function accepts nine input parameters and returns
the filtered signal in the input argument y.

Create a ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % Wait for hardware reset to complete before proceeding

Now run the Real-Time Workshop generated code from the beginning to
MdlOutputs. You run from program start until MdlOutputs to ensure that all of
the code configuration processes get done:

run(cc,'runtofunc',MdlOutputs);

After running to MdlOutputs, you create the function object—pass the
function declaration to avoid MATLAB returning an error when you create the
function object. Due to the complexity of this function declaration, we have
assigned the string to a variable decl. We use the variable in the createobj
syntax.
3-70

createobj
decl = ['MWDSP_IDECL void MWDSP_FIR_DF_DD(const real_T *u,...
real_T *y, real_T * const mem_base,int_T *mem_offset,...
const int_T numDelays, const int_T sampsPerChan,...
const int_T numChans, const real_T * const b,...
const boolean_T one_fpf)'];
ff = createobj(cc,'MWDSP_FIR_DF_DD','function','funcdecl',decl);

Examine the function declaration above. This declaration causes MATLAB to
fail to create the fully populated function object ff because of the MWDSP_IDECL
macro at the beginning of the string. MATLAB cannot recognize this string.
Since the information in MWDSP_IDECL is not relevant to creating the function
object, you can remove this from the declaration string:

decl = ['void MWDSP_FIR_DF_DD(const real_T *u,...
real_T *y, real_T * const mem_base,int_T *mem_offset,...
const int_T numDelays, const int_T sampsPerChan,...
const int_T numChans, const real_T * const b,...
const boolean_T one_fpf)'];
ff = createobj(cc,'MWDSP_FIR_DF_DD','function','funcdecl',decl);

Now function object ff has all the information MATLAB needs.

Note You may not always be able to remove offending entries in a declaration
string, as we did with the macro MWDSP_IDECL. Often you can try your
declaration and see if it works. If not, use add to include typedefs in the type
object when MATLAB complains about a data type, or try removing the
problem portion of the declaration string if the function does not require the
troublesome text.

With the function object in your MATLAB workspace, create objects for the
inputs to MWDSP_FIR_DF_DD:

Create an object for rtB:

rtBobj = createobj(cc,'rtB');

Get the relevant rtB member objects:

SumObj = getmember(rtBobj,'Sum');
% Store Output of MWDSP_FIR_DF_DD in FilObj
3-71

createobj
FilObj = getmember(rtBobj,'Digital_Lowpass_Fil');

Next, create an object for rtDWork:

rtDWorkObj = createobj(cc,'rtDWork');

and again get the relevant member objects:

Fil_FILT_STATES = getmember(rtDWorkObj,...
'Digital_Lowpass_Fil_FILT_STATES');
DF_INDX = getmember(rtDWorkObj,...
'Digital_Lowpass_Fil_FILT_STATES');

Create one last object for filterCoeffs:

filterCoeffsObj = createobj(cc,'filterCoeffs');

To run the function, you need to provide the input values:

u = SumObj.address(1); % Input 1
y = FilObj.address(1); % Input 2
mem_base = Fil_FILT_STATES.address(1); % Input 3
mem_offset = DF_INDX.address(1); % Input 4
numDelays = 65; % Input 5
sampsPerChan = 256; % Input 6
numChans = 1; % Input 7
b = filterCoeffsObj.address(1); % Input 8
one_fpf = 1; % Input 9

Run the function, providing the input argument values in input value/input
name pairs, such as 3,membase and 6,sampPerChan:

run(ff,1,u,2,y,3,mem_base,4,mem_offset,5,numDelays,6,...
sampsPerChan,7,numChans,8,b,9,one_fpf)

Run a Function That Has Vector Inputs
This example shows how to run a function that accepts vector inputs.

We are going to run the function adotprod that computes the dot product of two
matrices. adotprod accepts two inputs,

• x—a four-element vector of shorts

• y—a four-element vector of shorts
3-72

createobj
The compiler converts the vector inputs into pointers to the vectors. We use the
global variable a for input x and b for input y. The function returns a short.

Create a ccsdsp link:

cc = ccsdsp;
reset(cc);
pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main to ensure that CCS initializes all of the global variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for 'x'
b_addr = address(cc,'b'); % Global buffer for 'y'

Create a function object ff to access adotprod:

ff = createobj(cc,'adotprod')

The function prototype for adotprod is

int adotprod(short x[4], short y[4])

adotprod requires as input two vector arrays x and y. The compiler requires
that you pass the addresses of x[4] and y[4], not the actual vectors x and y. So
instead of writing a data vector to input object x_obj and y_obj, you provide
the addresses of existing four-element vectors:

display('INPUT VALUE ''x'':')
x_obj = getinput(ff,'x') % Note that this is a pointer to a vector

% of shorts
display('INPUT VALUE ''y'':')
y_obj = getinput(ff,'y') % Note that this is a pointer to a vector

% of shorts

Set value of inputs x and y and run the function. Pass addresses to x and y since
both are pointers to other data:

write(x_obj,a_addr(1))
write(y_obj,b_addr(1))
x_inputval = read(reshape(deref(x_obj),4));
y_inputval = read(reshape(deref(y_obj),4));

Using the following commands to write data to x and y does not give you the
expected result—the compiler cannot determine where to put array [1:4]:
3-73

createobj
write(x_obj,[1:4]);
write(y_obj,[1:4]);

Now run your function:

run(ff);

The preceding examples present a few of the wide variety of functions and
conditions you may encounter when you construct function objects.

See Also copy, ccsdsp, declare
3-74

datatypemanager
3datatypemanagerPurpose Open the Data Type Manager to identify custom data types from a CCS project
to MATLAB

Syntax datatypemanager(cc)
cc2 = datatypemanager(cc)

Description datatypemanager(cc) opens the Data Type Manager (DTM) with data type
information about the project to which cc refers. With the type manager open,
you can add type definitions (typedefs) from your project to MATLAB so it can
interpret them. You add your typedefs because MATLAB cannot determine or
understand typedefs in your function prototypes remotely across the interface
to Code Composer Studio.

Each custom type definition in your prototype must appear on the Typedef
name (Equivalent data type) before you can use the typedef from MATLAB
with a function object.

When the DTM opens, a variety of information and options displays in the
Data Type Manager dialog:

• Typedef name (Equivalent data type)—provides a list of default data
types. When you create a typedef, it appears added to this list.

• Add typedef—opens the Add Typedef dialog so you can add one or more
typedefs to your project. Your added typedef appears on the Typedef name
(Equivalent data type) list. Also, when you pass the cc object to the DTM,
and then add a typedef, the command
cc.type

returns a list of the data types in the object including the typedefs you added.

• Remove typedef—removes a selected typedef from the Typedef name
(Equivalent data type) list.

• Load session—loads a previously saved session so you can use the typedefs
you defined earlier without reentering them.

• Refresh list—updates the list in Typedef name (Equivalent data type).
Refreshing the list ensures the contents are current. If you changed your
project data type content or loaded a new project, this updates the type
definitions in the DTM.
3-75

datatypemanager
• Close—closes the DTM and prompts you to save the session information.
This is the only way to save your work in this dialog. Saving the session
creates an M-file you can reload into the DTM later.

Clicking Close in the DTM prompts you to save your session. Saving the
session creates an M-file that contains operations that create your final list
of data types, identical to the data types in the Typedef name list.

In the stored M-file, you find a function that includes the add and remove
operations you used to create the list of data types in the DTM. For each time
you added a typedef in the DTM, the M-file contains an add command that
adds the new type defintion to the cc.type property of the object. When you
remove a data type, you see an equivalent clear command that removes a
data type from the cc.type object.

An interesting note—all of your operations adding and removing data types
in the DTM during the session are stored in the generated M-file that you
save. This has the effect of storing any mistakes you make while creating or
removing type definitions. One consequence of storing mistakes is that when
you load your saved session into the DTM, you see the same error messages,
if any, you saw when you created the data types in the session. You might
find this a little disconcerting.

The first line of the M-file is a function definition, where the name of the
function is the filename of the session you saved.

cc2 = datatypemanager(cc) returns the cc2 ccsdsp object while it opens the
DTM. cc2 represents an alias to cc. Objects cc and cc2 are not independent
objects. When you change a property of either cc or cc2, the corresponding
property in the other object changes as well.

Data Type Manager
When you create objects that access functions in a project, MATLAB can
recognize most data types that you use in your project. However, if the
functions use one or more custom type definitions, MATLAB cannot recognize
the data type and cannot work with the function. To overcome this problem, the
Data Type Manager provides the capability to define your typedefs to
MATLAB.

Entering

datatypemanager(cc)
3-76

datatypemanager
at the MATLAB prompt opens the DTM.

Before you add a type definition, the Typedef name (Equivalent data type)
list shows a number of data types already defined:

• Void(void)—void return argument for a function

• Float(float)—float data type used in a function input or return argument

• Double(double)—double data type used in a function input or return
argument

• Long(long)—long data type used in a function input or return argument

• Int(int)—integer data type used in a function input or return argument

• Short(short)—short data type used in a function input or return argument

• Char(char)—character data type used in a function input or return
argument
3-77

datatypemanager
The lowercase versions of the data types appear because MATLAB does not
recognize the initial capital versions automatically. In the data type entry, the
project data type with the initial capital letter is mapped to the lowercase
MATLAB data type.

Although not recommended, you can use mixed case typedef names, so long as
the equivalent data type uses lowercase. In particular, typedefs that refer to
other typedefs should resolve to a data type in lowercase.

Adding a type definition adds the new data type to the list of typedefs.

Remove any existing or new type definitions with the Remove typedef option.

Add Typedef Dialog
Clicking Add typedef in the DTM opens the List of Known Data Types dialog.
As shown in this figure, you add your custom type definitions here.

When you have used custom type definitions in your program or project, you
must specify what they mean to MATLAB. The Typedef option lets you enter
the name of the typedef in your program and select an equivalent type from the
Known Types list. By defining your type definitions in this dialog, you enable
3-78

datatypemanager
MATLAB can understand and work with them when you return the data to the
MATLAB workspace or send data from the workspace to your project.

After you define each typedef, the Equivalent type option shows you the type
you specified for each type definition, either when you enter it in the Typedef
field or select it from the Known Types list.

Options in this dialog let you review the known data types currently in use or
available in your projects. By selecting different data type categories from the
Known Types list, you can see all of the supported data types.

From the list of known data types, choose one of the following data type
categories:
3-79

datatypemanager
• MATLAB Types

• TI C Types

Data Type Description

int8 8-bit integer data

uint8 unsigned 8-bit integer data

int16 16-bit integer data

uint16 unsigned 16-bit integer data

int32 32-bit integer data

uint32 unsigned 32-bit integer data

int64 64-bit integer data

uint64 unsigned 64-bit integer data

single 32-bit IEEE floating-point data

double 64-bit IEEE floating-point data

Data Type Description (For C6000 Compiler)

char 8-bit character data with a sign bit

unsigned char 8-bit character data

signed char 8-bit character data

short 16-bit numeric data

unsigned short unsigned 16-bit numeric data

signed short 16-bit numeric data with sign designation

int 32-bit integer numeric data

unsigned int 32-bit integer numerics without sign
information
3-80

datatypemanager
Numbers of bits change depending on the processor and compiler. For more
information about TI data types and specific processorsor compilers, refer to
your compiler documentation from TI.

• TI Fixed Point Types

• Struct, Union, Enum types

If the program you load on the processor includes one or more of struct,
union, or enum data types, the type definitions show up on this list. Until you

signed int 32-bit integer numerics with sign
information

long 40-bit data with sign bit. Note that this is
not the same as int.

unsigned long 40-bit data without information about the
sign of the number

signed long 40-bit data without information about the
sign of the number represented

float 32-bit numeric data

double 64-bit numeric data

long double On the C2xxx and C5xxx—32-bit IEEE
floating-point data
On the C6xxx—64-bit IEEE floating-point
data

Data Type Description

Q0.15 Numeric data with 16-bit word length and
15-bit fraction length

Q0.31 32-bit word length numeric data with
fraction length of 31 bits

Data Type Description (For C6000 Compiler)
3-81

datatypemanager
load a program on the processor, this list is empty and trying to access the
list generates an error message.

Load a program, if you have not already done so, by clicking Load CCS
Program and selecting a .out file to load on your processor.

• When the load process works, you see the name of the file you loaded in
Loaded program. Otherwise you get an error message that the load failed.

 Only programs that you load from this dialog appear in Program loaded.
Programs that you already loaded on your target do not appear in the
Loaded program option. MATLAB cannot determine what program you
have loaded.

• Others(e.g. pointers,typedefs)

Like struct, union, and enum data types, the Others list is empty until you
define one or more typedefs. Unlike the Struct, Union, Enum types list,
loading a program does not populate this list with typedefs from the
program. You must define them explicitly in this dialog.

Custom type definitions can refer to other typedefs in your project. Nesting
typedefs works once you have defined the necessary custom types. To create
a typedef that uses another typedef, define the nested (inner) definition, and
then define the outer definition as a pointer to the nested definition. Refer to
“Examples” to see this in operation.

Program loaded—tells you the name of the program loaded on the processor,
if you loaded the program from this dialog. If not, Program loaded does not
report the program name.

Load CCS Program—opens the Load Program dialog so you can select and
load a .out file to your processor.

Examples This set of examples, show how to create custom type definitions with the DTM.
Each example shows the List of Known Data Types dialog with the selections
or entries needed to create the typedef.

Start the examples by creating a ccsdsp object:

cc=ccsdsp;

Now start the DTM with the cc object. So far you have not loaded a file on the
target.
3-82

datatypemanager
datatypemanager(cc);

With the DTM open, you can create a few custom data types.

First example
Create a typedef (typedef1) that uses a MATLAB data type. typedef1 uses the
equivalent data type uint32.

Second example
Create a second typedef (typedef2) that uses one of the TI C data types. Define
typedef2 to use the signed long data type.
3-83

datatypemanager
Third example
Create a typedef (typedef3) that refers to another typedef (typedef2). Call this
a nested typedef.
3-84

datatypemanager
Notice that the referenced typedef, typedef2, is entered as a pointer (indicated
by the added asterisk). Using the pointer form lets MATLAB recognize the data
type that typedef2 represents. If you do not use the pointer, MATLAB converts
typedef3 to a default value equivalent data type, in this case, int.

The next figure shows typedef4 created to use typedef2 rather than
typedef2* for a nested typedef. Under Equivalent type, typedef4 has an
equivalent data type of typedef2, as specified. But, when you look at the list of
known data types in the Data Type Manager dialog, you see that typedef4
maps to int, not typedef2, or eventually signed long.
3-85

datatypemanager
Here is the DTM after you create all the example custom data types. Take note
of typedef4 in this listing. You see typedef4 defaults to an equivalent data
type int, where typedef3, also a nested type definition, retains the equivalent
data type you assigned. Now you are ready to use a function that includes your
custom type definitions in your hardware-in-the-loop development work.
3-86

datatypemanager
See Also createobj
3-87

declare
3declarePurpose Define a C function declaration in MATLAB for your CCS application

Syntax declare(objname,'filetype','filename')
declare(objname,'decl','funcdeclaration')

Description When createobj cannot construct a function object to access a function, either
because MATLAB could not find the function declaration for the function, or
could not create the function object properties, use declare to pass the
function declaration to MATLAB.

declare(objname,'filetype','filename') passes your function declaration
string to objname by providing the path to the file specified in filename. To set
the type of file you are providing, input argument filetype can be one of three
strings:

• 'filename'—specifies that filename contains the path and filename for
your header file that contains the function declaration

• 'file'—same as filename

• 'header'—specifies that filename is the path and name of a header file that
contains the function declaration

When declare cannot find the declaration string because the specified header
file or file is not available, use the next syntax to provide the complete
declaration string explicitly.

declare(objname,'decl','funcdeclaration') passes the declaration string
in funcdeclaration to objname. To tell MATLAB that you are passing a
declaration string, add the keyword decl, indicating that the next argument is
the function declaration string. When you use declare to add a function
declaration to objname, declare reads the input variables and return type for
the declaration from funcdeclaration and populates the properties
inputvars, inputnames, and outputvar of objname. When declare successfully
determines the input and output variables, objname contains the updated
property values.

Examples The following code passes the function declaration for cdotprod to MATLAB
and updates the properties of ff to match the declaration:

declare(ff,'decl','int cdotprod (short x[], short y[], short n)')
3-88

declare
In the case of a very complex function declaration, assign the declaration string
to a variable and pass the variable in the declare syntax:

declstring=['int cdotprod (short x[], short y[], short n)']
declare(ff,'decl',declstring)

See Also assignreturnstorage, createobj, execute, getinput, getoutput, goto,
resume, run
3-89

delete
3deletePurpose Remove debug points in addresses or source files in CCS

Syntax delete(cc,addr,'type')
delete(cc,addr)
delete(cc,filename,line,'type')
delete(cc,filename,line)

Description delete(cc,addr,'type') removes a debug point located at the memory
address identified by addr for your target digital signal processor. Object cc
identifies which target has the debug point to delete. CCS provides several
types of debug points. To learn more about the behavior of the various
debugging points refer to your CCS documentation. Options for type include
the following to remove breakpoints and probe points:

• 'break' — removes a breakpoint. This is the default.

• ' ' — same as 'break'.

• 'probe' — removes a probe point.

Unlike deleting break and probe points in CCS, you cannot enter addr as a C
function name, valid C expression, or a symbol name.

When the type you specify does not match the debug point type at the selected
location, or no debug point exists, MATLAB Link for Code Composer Studio
returns an error reporting that it could not find the specified debugging point.

delete(cc,addr) is the same as the previous syntax except the function
defaults to 'break' for removing a breakpoint.

delete(cc,filename,line,'type') lets you specify the line from which you
are removing the debug point. Argument line specifies the line number in the
source file file in CCS. line, in decimal notation, defines the line number of
the debugging point to remove. To identify the source file, argument filename
contains the name of the file in CCS, entered as a string in single quotation
marks. 'type' accepts one of two strings — break or probe — as defined
previously. Whenthe type of debugging point you specify with the 'type' string
does not match the debug point type at the specified location, or no debug point
exists, MATLAB Link for Code Composer Studio returns an error that it could
not find the debug point.
3-90

delete
delete(cc,filename,line) defaults to 'break' to remove a breakpoint.

See Also address, insert, run
3-91

deleteregister
3deleteregisterPurpose Remove one or more registers from the list of saved registers stored in the
property savedregs of function objects

Syntax deleteregister(ff,'regname')
deleteregister(ff,'reglist'

Description deleteregister(ff,regname) removes register regname from the list of
registers that get preserved or reverted when a function is finished running. ff
identifies the program function to which the register applies. You can delete
any register you added from the saved registers list. You cannot delete
registers that are on the default list of saved registers—the must save
registers.

When you issue the createobj call to create a handle to a function, the
compiler creates the default list of saved registers. When you execute the
function, the compiler saves the registers in the list, runs its process, and after
completing its process, restores the saved registers to their initial state using
the contents of the saved registers.

After a function generates a result, the execution process returns the saved
registers to their initial states and values. When you delete a register you
added to the saved registers list, the deleted register is not restored or saved
with other registers in the list.

For each processor family, the default list of saved registers changes, as shown
in these sections. The default lists include registers that the compiler saves and
that MATLAB requires for MATLAB Link for Code Composer Studio to operate
correctly.

Default Saved Registers for C28x Processors
AL, AH, AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7, XAR0, XAR1, XAR2,
XAR3, XAR4,XAR5, XAR6, XAR7, SP, T, TL, PL, PH, DP

Default Saved Registers for C54x Processors
AR1, AR6, AR7, and SP (required by MATLAB, not the compiler)

Default Saved Registers for C55x Processors
T0, T1, T2, T3, TRN0, TRN1, AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7,
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7, AC0, AC1, AC2, AC3

Default Saved Registers for C62x and C67x Processors
3-92

deleteregister
A0, A2, A6, A7, A8, A9. Also B0, B1, B2, B4, B5, B6, B7, B8, B9. To support
MATLAB requirements, B15 (the stack pointer) gets saved as well.

Registers A3, A4, A5, and B3—your function must preserve these but they are
not needed for reading function output.

Default Saved Registers for C64x Processors
A0, A2, A6, A7, A8, A9, A16, A17, A19, A19, A20, A21, A22, A23, A24, A25, A26,
A27, A28, A29, A30, A31. Also B0, B1, B2, B4, B5, B6, B7, B8, B9, B16, B17,
B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31. To
support MATLAB requirements, B15 (the stack pointer) gets saved as well.

Register B15—not required by the compiler, but is required by MATLAB and
is saved.

Registers A3, A4, and A5—function must preserve these but they are needed
for reading function output.

Default Saved Registers for R1x and R2x Processors
R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14,R15

deleteregister(ff,reglist) deletes the register names in reglist from the
list of registers that get preserved when a task is finished. ff identifies the
function to which the register applies. reglist is a cell array that contains the
names of registers to remove from the saved registers collection.

See Also addregister
3-93

deref
3derefPurpose Return an object that accesses the object a pointer object points to

Syntax objname2 = deref(objname)

objname2 = deref(objname, index)

Description objname2 = deref(objname) creates objname2, an object that accesses the
target of objname, which is either a pointer or rpointer object. deref does
exactly what the dereferencing operator * does in C. Pointer and rpointer
objects support using function deref.

objname2 = deref(objname,index) selects one member, specified by index, of
an array of pointers. objname2 accesses only the single array member that
index specifies.

See Also createobj, read, write
3-94

dir
3dirPurpose List the files in the current CCS IDE working directory

Syntax dir(cc)

Description dir(cc) lists the files and directories in the current CCS IDE working
directory. This does not reflect your MATLAB working directory or change the
working directory.

Use cd to change your CCS IDE working directory.

See Also cd, open
3-95

disable
3disablePurpose Disable the RTDX interface, a specified channel, or all RTDX channels

Syntax disable(rx,'channel')
disable(rx,'all')
disable(rx)

Description disable(rx,'channel') disables the open channel specified by the string
channel, for rx. Input argument rx represents the RTDX portion of the
associated link to CCS IDE.

disable(rx,'all') disables all the open channels associated with rx.

disable(rx) disables the RTDX interface for rx.

Important Requirements for Using disable
On the target side, disable depends on RTDX to disable channels or the
interface. You must meet the following requirements to use disable:

1 The target must be running a program when you use disable for channels
or the RTDX interface.

2 You must have the enabled the RTDX interface.

3 Your target program must be polling periodically for disable to work.

Examples When you have opened and used channels to communicate with a target
processor, you should disable the channels and RTDX before ending your
session. Use disable to switch off open channels and disable RTDX, as follows:

disable(cc.rtdx,'all') % Disable all open RTDX channels.
disable(cc.rtdx) % Disable RTDX interface.

See Also close, enable, open
3-96

display
3displayPurpose Display the properties of a link to CCS IDE or an RTDX link

Syntax display(cc)
display(rx)
display(objectname)
display(cc.type)

Description This function is similar to omitting the closing semicolon from an expression on
the command line, except that display does not display the variable name.
display provides a formatted list of the property names and property values
for a a link to CCS IDE. To return the configuration data, display calls the
function disp. To return a list of object properties, listed by the actual property
names, use get with the object.

display(cc) returns the information about the cc object, listing the
properties and values assigned to cc.

display(rx) returns the information about the rtdx object that is part of a cc
object, listing the properties and values assigned to cc.rtdx.

display(objectname) returns the properties and property values for
objectname. This syntax supports all objects except cc, rtdx, and cc.type.

display(cc.type) returns the properties and property values for the cc.type
object. Note that the properties associate with the cc object.

The following example illustrates the default display for a link to CCS IDE:

cc = ccsdsp;

display(cc)
CCSDSP Object:

 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs
3-97

display
 RTDX channels : 0

Using display with multiprocessor targets
To support target boards that contain more than one processor, display
behaves slightly differently when cc accesses multiprocessor boards.

The syntax

display(cc)

returns information about all of the members of the object. When the target has
multiple processors, the information returned includes the details of all of the
available processors on the target.

Examples Try this example to see the display for an RTDX link to a target processor:

cc = ccsdsp;
rx=(cc.rtdx) % Assign the RTDX portion of cc to rx.

RTDX channels : 0

display(rx)

RTDX channels : 0

See Also get, set
3-98

enable
3enablePurpose Enable the RTDX interface, a specified channel, or all RTDX channels

Syntax enable(rx,'channel')
enable(rx,'all')
enable(rx)

Description enable(rx,'channel') enables the open channel specified by the string
channel, for RTDX link rx. The input argument rx represents the RTDX
portion of the associated link to CCS IDE.

enable(rx,'all') enables all the open channels associated with rx.

enable(rx) enables the RTDX interface for rx.

Important Requirements for Using enable
On the target side, enable depends on RTDX to enable channels. Therefore the
you must meet the following requirements to use enable:

1 The target must be running a program when you enable the RTDX interface.
When the target is not running, the state defaults to disabled.

2 You must enable the RTDX interface before you enable individual channels.

3 Channels must be open before you can enable them.

4 Your target program must be polling periodically for enable to work.

5 Using code in the program running on the target to enable channels
overrides the default disabled state of the channels.

Examples To use channels to RTDX, you must both open and enable the channels:

cc = ccsdsp; % Create a new link.
enable(cc.rtdx) % Enable the RTDX interface.
open(cc.rtdx,'inputchannel','w') % Open a channel for sending

% data to the target processor.
enable(cc.rtdx,'inputchannel') % Enable the channel so you can use

% it.

See Also disable, open
3-99

equivalent
3equivalentPurpose Return the equivalent string or numeric value for an input argument

Syntax value = equivalent(objname,input)

Description value = equivalent(objname,input) returns value as either

• The decimal numeric equivalent of input when input is a string

• The string equivalent value of input when input is a numeric

input can be a single value, a single string, an array of values or strings, or a
cell array of values or strings.

Numeric objects, string objects, rstring objects, and enum objects all support
equivalent.

The conversion process depends on the setting of the charconversion property
of the object and applies only to string and rstring objects. Currently, the only
property value allowed for charconversion is 'ASCII' indicating that strings
are treated as ASCII characters and numeric values get converted to the ASCII
equivalents.

See Also cast, convert
3-100

execute
3executePurpose Execute a function on a target through CCS

Syntax output_val = execute(ff)
output_val = execute(ff,input1,value1,...,inputn,valuen)

Description output_val = execute(ff) runs the function specified by handle ff on your
target hardware. When you do not specify values for the inputs to the function,
execute uses the values stored in property inputvars for the arguments. The
function runs until the end of the function, or until it reaches a breakpoint.
After executing the function, the execution process puts the return value in the
assigned location in property outputvar of ff. From MATLAB, use read to
check the result stored in outputvar. In this form, output_val holds the return
value from executing the function.

Before you use execute to run a function, use goto to position the program
counter to the beginning of the function. execute assumes that you have
completed this step; it does not search for the function. Execution starts from
the program counter location and continues to the end of the function or an
intervening breakpoint.

output_val = execute(ff,input1,value1,...,inputn,valuen) runs the
function identified by ff, first writing the input values assigned by the inputn/
valuen pairs to inputvars. Arguments input1, input2,...,inputn must be
strings. input1 through inputn can be either the names of the input
arguments, or the number of the input argument in the argument list, such as
1 for the first argument, 2 for the second, up to n for the nth argument on the
list. In this form, output_val holds the return value from executing the
function. You must call goto before using this syntax, or execute fails.

See Also goto, run, write
3-101

flush
3flushPurpose Flush data or messages out of one or more specified RTDX channels

Syntax flush(rx,'channel',num,timeout)
flush(rx,'channel',num)
flush(rx,'channel',[],timeout)
flush(rx,'channel')
flush(rx,'all')

Description flush(rx,channel,num,timeout) removes num oldest data messages from the
RTDX channel queue specified by channel in rx. To determine how long to wait
for the function to complete, flush uses timeout (in seconds) rather than the
global time-out period stored in rx. flush applies the time-out processing when
it flushes the last message in the channel queue, since the flush function
performs a read to advance the read pointer past the last message. Use this
calling syntax only when you specify a channel configured for read access.

flush(rx,channel,num) removes the num oldest messages from the RTDX
channel queue in rx specified by the string channel. flush uses the global
time-out period stored in rx to determine how long to wait for the process to
complete. Compare this to the previous syntax that specifies the time-out
period. Use this calling syntax only when you specify a channel configured for
read access.

flush(rx,channel,[],timeout) removes all data messages from the RTDX
channel queue specified by channel in rx. To determine how long to wait for
the function to complete, flush uses timeout (in seconds) rather than the
global time-out period stored in rx. flush applies the time-out processing when
it flushes the last message in the channel queue, since flush performs a read
to advance the read pointer past the last message. Use this calling syntax only
when you specify a channel configured for read access.

flush(rx,channel) removes all pending data messages from the RTDX
channel queue specified by channel in rx. Unlike the preceding syntax options,
you use this statement to remove messages for both read-configured and
write-configured channels.

flush(rx,'all') removes all data messages from all RTDX channel queues.
3-102

flush
When you use flush with a write-configured RTDX channel, MATLAB Link for
Code Composer Studio sends all the messages in the write queue to the target.
For read-configured channels, flush removes one or more messages from the
queue depending on the input argument num you supply and disposes of them.

Examples To demonstrate flush, this example writes data to the target over the input
channel, then uses flush to remove a message from the read queue for the
output channel:

cc = ccsdsp;
rx = cc.rtdx;
open(rx,'ichan','w');
enable(rx,'ichan');
open(rx,'ochan','r');
enable(rx,'ochan');
indata = 1:10;
writemsg(rx,'ichan',int16(indata));
flush(rx,'ochan',1);

Now flush the remaining messages from the read channel:

flush(rx,'ochan','all');

See Also enable, open
3-103

get
3getPurpose Return the properties of an object

Syntax get(cc,'propertyname')
get(cc)
v = get(cc,'propertyname')
get(rx,'propertyname')
get(rx)
v = get(rx)
get(objname,'propertyname')
get(objname)

v = get(objname)

Description get(cc,'propertyname') returns the property value associated with
propertyname for link cc.

get(cc) returns all the properties and property values identified by the link
cc.

v = get(cc,'propertyname') returns a structure v whose field names are the
link cc property names and whose values are the current values of the
corresponding properties. cc must be a link. If you do not specify an output
argument, MATLAB displays the information on the screen.

get(rx,'propertyname') returns the property value associated with
propertyname for link rx.

get(rx) returns all the properties and property values identified by the link
rx.

v = get(rx) returns a structure v whose field names are the link rx property
names and whose values are the current values of the corresponding
properties. rx must be a link. If you do not specify an output argument,
MATLAB displays the information on the screen.

get(objname,'propertyname') returns the property value associated with
propertyname for objname.

get(objname) returns all the properties and property values identified by
objname.
3-104

get
v = get(objname) returns a structure v whose field names are the objname
property names and whose values are the current values of the corresponding
properties. objname must be an object in your MATLAB workspace. If you do
not specify an output argument, MATLAB displays the information on the
screen.

Examples After you create a link for CCS IDE and RTDX, get provides a way to review
the properties of the link.

cc=ccsdsp

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

get(cc)

ans =

 app: [1x1 activex]
 dspboards: [1x1 activex]
 dspboard: [1x1 activex]
 dsptasks: [1x1 activex]
 dsptask: [1x1 activex]
 dspuser: [1x1 activex]
 rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: 'D:\ticcs\cc\bin\cc_app.exe'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0
3-105

get
v=get(cc)

v =

 app: [1x1 activex]
 dspboards: [1x1 activex]
 dspboard: [1x1 activex]
 dsptasks: [1x1 activex]
 dsptask: [1x1 activex]
 dspuser: [1x1 activex]
 rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: 'D:\ticcs\cc\bin\cc_app.exe'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

v.app

ans =
activex object: 1-by-1

v.rtdx

 RTDX channels : 0

RTDX links work in the same way. Create an alias rx to the RTDX portion of
cc, then use the alias with get:

rx=cc.rtdx

 RTDX channels : 0

get(rx)

ans =

 numChannels: 0
 Rtdx: [1x1 activex]
 RtdxChannel: {'' [] ''}
3-106

get
 procType: 103
 timeout: 10

v=get(rx)

v =

 numChannels: 0
 Rtdx: [1x1 activex]
 RtdxChannel: {'' [] ''}
 procType: 103
 timeout: 10
v.timeout

ans =

 10

v.procType

ans =

 103

See Also set
3-107

getinput
3getinputPurpose Return a specified input argument object from a function object

Syntax inputobj = getinput(ff,input_name)

Description inputobj = getinput(ff,input_name) returns the input object that accesses
input_name. Enter input_name in single quotation marks since it is a string.

Note After you execute a function, the information returned by getinput
may not be the same as the information returned before you run the method.

This occurs because the compiler uses stack and register locations as
temporary storage and may overwrite the contents of either the stack or
registers during execution. In particular, when your function stores the
function return value in one of the input variables, the compiler overwrites
the value of the input with the output value. Refer to Examples to see this in
use.

Examples Use getinput to see the properties of an input object in a function object:

sin_t=createobj(cc,'sin_taylor')

FUNCTION Object
 Function name : sin_taylor
 File found : hiltut.c
 Start address : [12328 0]
 All variables : a1, a2, a3, acc, x, xpow
 Input variables : x
 Return type : short

sin_t.inputvars

ans =

 x: [1x1 ccs.rnumeric]

x_inobj=getinput(sin_t,'x')
3-108

getinput
NUMERIC Object stored in register(s):
 Symbol name : x
 Register : A4
 Datatype : Unknown
 Wordsize : 16 bits
 Register units per value : 1 ru
 Representation : signed
 Bit padding (post) : 16
 Size : [1]
 Total register units : 1 ru
 Array ordering : row-major

x_inobj

NUMERIC Object stored in register(s):
 Symbol name : x
 Register : A4
 Datatype : Unknown
 Wordsize : 16 bits
 Register units per value : 1 ru
 Representation : signed
 Bit padding (post) : 16
 Size : [1]
 Total register units : 1 ru
 Array ordering : row-major

Demonstrate that the information from getinput may change after executing
a function.

In your CCS project:

 void fl2q15(double *x, short *r,int nx); % r is where the output
% is stored

Now, in MATLAB, here is the code that demonstrates getinput changing.

% Create function class

cc = ccdsp;
ff = createobj(cc,'fl2q15')
3-109

getinput
% Create objects that will be used as inputs to fl2q15

input_x = createobj(cc,'input_x') % Global variable an array of
% doubles

write(input_x,[0.1 2.5 8.0]) % Write data into input_x

input_r = createobj(cc,'input_r') % Global variable an array of
% shorts

% Get input objects and assign values

xobj = getinput(ff,'x')
write(xobj,input_x.address)

robj = getinput(ff,'r')
write(robj,input_r.address) % Also means 'set the result to point

% to the location of input_r'

nxobj = getinput(ff,'nx')
write(nxobj,3)

% Run the function

run(ff)

% Read the result

output_err = read(deref(robj)) % Returns the wrong result
% because robj now holds a
% different value

output_correct = read(input_r))

Gives the correct result because the address of input_r where the function
stored the output did not change.

See Also createobj, getoutput
3-110

getmember
3getmemberPurpose Return an object that accesses one member of a structure

Syntax objname2 = getmember(objname,membername)
objname2 = getmember(objname,index,membername)

Description objname2 = getmember(objname,membername) returns the object objname2
that represents membername, a member of the structure that objname accesses.
membername must be a string and objname must represent a structure in
memory. Once you create objname2, it becomes the object you use to read and
write membername. Along with createobj, these are the only functions that
create objects in the product.

The class of objname2 depends on the data type of membername—numeric
structure members return numeric objects, enumerated members return enum
objects, pointers return pointer objects, and so on:

objname2 = getmember(objname,index,membername)

Examples Suppose you have declared a structure in your source code called testdeepstr,
using code like this:

struct testdeepstr {
int x_int;
struct mystructa x_str;

 struct mystructa z_str[2];
} str_recur;

Now, getmember creates objects that directly access members of str_recur:

str_recur=createobj(cc,'str_recur')

STRUCTURE Object:
 Symbol Name : str_recur
 Address : [2147500816 0]
 Address Units per value : 224 AU
 Size : [1]
 Total Address Units : 224 AU
 Array ordering : row-major
 Members : 'x_int', 'x_str', 'z_str'

x_str=getmember(structtest,'x_str')
3-111

getmember
STRUCTURE Object:
 Symbol Name : x_str
 Address : [2147500824 0]
 Address Units per value : 72 AU
 Size : [1]
 Total Address Units : 72 AU
 Array ordering : row-major
 Members : 's_int', 'a_int', 's_double', 'a_char'

Even when the structure member is itself a structure, getmember provides
access directly to the nested structure, or to members within the nested
structure:

s_double=getmember(nestx_str,'s_double')

NUMERIC Object
 Symbol Name : s_double
 Address : [2147500872 0]
 Wordsize : 64 bits
 Address Units per value : 8 AU
 Representation : float
 Binary point position : 0
 Size : [1]
 Total address units : 8 AU
 Array ordering : row-major
 Endianness : little

Numeric object s_double is now your handle to write to or read from member
s_double:

read(s_double)

ans =

 -1.4938e+059

write(s_double,2)
read(s_double)
3-112

getmember
ans =

 2

See Also createobj, read, write
3-113

getoutput
3getoutput

Purpose Return the object that accesses the output from a function object

Syntax out_obj = getoutput(ff)

Description out_obj = getoutput(ff) returns in out_obj the object that accesses the
return from ff. The input argument ff must be a function object constructed
either by createobj or a combination of createobj and declare. To return any
value, ff must be a fully populated function object, with all the required input
and output objects.

Examples Use getoutput to see the properties of the output object in a function object:

sin_t=createobj(cc,'sin_taylor')

FUNCTION Object
 Function name : sin_taylor
 File found : hiltut.c
 Start address : [12328 0]
 All variables : a1, a2, a3, acc, x, xpow
 Input variables : x
 Return type : short

getoutput(sin_t)

NUMERIC Object stored in register(s):
 Symbol name :
 Register : A4
 Datatype : Unknown
 Wordsize : 16 bits
 Register units per value : 1 ru
 Representation : signed
 Bit padding (post) : 16
 Size : [1]
 Total register units : 1 ru
 Array ordering : row-major
3-114

getoutput
Note that you do not need the output variable name in getoutput. Since there
can only be one output object (one output variable) you do not need to specify
which object to display.

See Also createobj, getinput
3-115

gettypeinfo
3gettypeinfo

Purpose Return information about an existing type definition in a type object

Syntax info = gettypeinfo(cc.type,'typename')

Description gettypeinfo(cc.type,'typename') returns all the available information
about the user defined data type typename in the type object cc.type.

Examples Here is what happens when you use gettypeinfo to learn about a type in the
type class:

cc.type

Defined types : Void, Float, Double, Long, Int, Short, Char,
mynewtypedef

gettypeinfo(cc.type,'Double')

ans =

 type: 'double'
 size: 1
 uclass: 'numeric'

One important note—type names are case sensitive. double and Double are not
the same.

See Also add, clear, createobj
3-116

goto
3gotoPurpose Position the program counter to the specified location in the project code

Syntax goto(cc,'functionname')
goto(ff)
goto(ff,'input1',value1,...,'inputn',valuen)

Description goto(cc,'functionname') opens the source file in CCS that contains
functionname and positions the cursor at the beginning of functionname.
Using goto can help you locate and work with a file that contains a specific
function without searching through all the files.

goto(ff) positions the program counter to the beginning of the function
accessed by ff. Using goto in this syntax prepares the function to be executed
but does not place any information in the registers associated with the
function. Before you use this form of goto, you can pass the necessary values
for the function input arguments into the appropriate registers and stack
locations. You can do this whether the function has input parameters or not.

In the following sections, you see the registers and memory locations on each
processor that are affected by preparing to run the function.

C2800 Family Input Argument Storage Allocation
C2800 processors interpret and store input argument data in a way quite
different from the other TI processors.

The processor first checks the sizes of the function input arguments. After
determining which inputs are 32-bit, pointers, and 16-bit arguments, the
processors starts to allocate storage for the data.

Having sorted the input arguments by data size and type, the processor starts
to allocate storage by handling the 32-bit arguments. The processor places the
first 32-bit input argument (either long or float data types) into the
accumulator, registers AH and AL. Other 32-bit input arguments, if any, get
stored on the stack.

Next come the pointer input arguments. The first and second pointer input
arguments go to registers XAR4 and XAR5. If the function prototype uses more
than two pointers as input arguments, the remaining pointers go on the stack.
3-117

goto
Finally, the processor treats the 16-bit input arguments. Where 16-bit
arguments (ints) go depends on the number and kind of other input arguments
to the function. The first four 16-bit inputs go into AH, AL, XAR4, and XAR5,
in that order, if the registers are available.

But recall that 32-bit inputs go into AL and AH, and pointers go into XAR4 and
XAR5. So, 16-bit input arguments go into any empty location among AL, AH,
XAR4, and XAR5. Remaining 16-bit arguments go on the stack.

To make this a bit more clear, this short example uses five input arguments to
function function. Input arguments a and c are 32-bit arguments, b is a
pointer, and d and e are 16-bit arguments. For a function like this one

void function(a,b,c,d,e)

the compiler allocates the input arguments as shown here, in order.

1 a goes into register AH. It is the first 32-bit input argument.

2 c goes into register AL. It is the second 32-bit input argument.

3 b, the first pointer, goes into XAR4

4 d, the first 16-bit argument, goes into XAR5

5 e, the second 16-bit argument, goes on the stack, since AH, AL, XAR4, and
XAR5 are full.

For this example, additional input arguments, if there were any, would go on
the stack.

C5400 Family Input Argument Storage Allocation

Argument Register For Long
Arguments

Description

value1 A A First input value to function

value2 and higher Stack Stack All input arguments after the tenth
argument get placed on the stack

Returned Argument A A Returned argument
3-118

goto
C6000 Family Input Argument Storage Allocation

goto(ff,'input1',value1,...,'inputn',valuen) positions the PC to the
beginning of the function accessed by ff, and sets the function input arguments

Argument Register For Long
Arguments

Description

value1 A4 A5:A4 First input value to function

value2 B4 B5:B4 Second input value to function

value3 A6 A7:A6 Third input value to function

value4 B6 B7:B6 Fourth input value to function

value5 A8 A9:A8 Fifth input value to function

value6 B8 B9:B8 Sixth input value to function

value7 A10 A11:A10 Seventh input value to function

value8 B10 B11:B10 Eighth input value to function

value9 A12 A13:A12 Ninth input value to function

value10 B12 B13:B12 Tenth input value to function

value11 and higher Stack Stack All input arguments after the tenth
argument get placed on the stack.

Pointer to returned
structure

A3 N/A Pointer

Return address register B3 N/A Address of register

Returned argument A4 A5:A4 Returned argument

Data page pointer (DP) B14 N/A Specifies the data page. Always 1 for
the C6000 processor family.

Frame Pointer (FP) A15 N/A Specifies the frame pointer location

Stack Pointer (SP) B15 N/A Specifies the stack pointer location
3-119

goto
input1 through inputn to the values value1 through valuen, as provided in the
goto syntax. The order of the input names and values is not important; it does
not need to match the order of the input arguments in the function prototype
or declaration. input1 through inputn can be either the names of the input
arguments, or the number of the input argument in the argument list, such as
1 for the first argument, 2 for the second, up to n for the nth argument on the
list.

Note goto must be followed by execute.

See Also delete, execute, insert, run
3-120

halt
3haltPurpose Terminate execution of a process running on the target

Syntax halt(cc,timeout)

Description halt(cc,timeout) immediately stops program execution by the processor.
After the processor stops, halt returns to the host. timeout defines, in seconds,
how long the host waits for the target processor to stop running. To resume
processing after you halt the processor, use run. Also, the read(cc,'pc')
function can determine the memory address where the processor stopped after
you use halt.

timeout defines the maximum time the routine waits for the processor to stop.
If the processor does not stop within the specified timeout period, the routine
returns with a timeout error.

halt(cc) immediately stops program execution by the processor. After the
processor stops, halt returns to the host. In this syntax, the timeout period
defaults to the global timeout period specified in cc. Use get(cc) to determine
the global timeout period.

Using halt with multiple processor target boards
When you issue a halt from the command line, it applies to every processor
that the cc object represents. Thus halt stops every running processor for the
object. We call this process broadcasting the method.

Examples Use one of the provided demonstration programs to show how halt works. From
the CCS IDE demonstration programs, load and run volume.out.

At the MATLAB prompt create a link to CCS IDE

cc = ccsdsp

Check whether the program volume.out is running on the processor.

isrunning(cc)

ans =

 1

cc.isrunning % Alternate syntax for checking the run status.
3-121

halt
ans =

 1
halt(cc) % Stop the running application on the processor.
isrunning(cc)

ans =

 0

Issuing the halt stopped the process on the target. Checking in CCS IDE shows
that the process has stopped.

See Also ccsdsp, isrunning, run
3-122

info
3infoPurpose Return information about the target processor

Syntax info = info(cc)
info = info(rx)

Description info = info(cc) returns the property names and property values associated
with the processor targeted by cc. info is a structure containing the following
information elements and values:

Structure Element Data Type Description

info.procname String Processor name as defined in the CCS setup utility. In
multiprocessor systems, this name reflects the specific
processor associated with cc.

info.isbigendian Boolean Value describing the byte ordering used by the target
processor. When the processor is big-endian, this value
is 1. Little-endian processors return 0.

info.family Integer Three-digit integer that identifies the processor family,
ranging from 000 to 999. For example, 320 for Texas
Instruments digital signal processors.

info.subfamily Decimal Decimal representation of the hexadecimal identification
value that TI assigns to the processor to identify the
processor subfamily. IDs range from 0x000 to 0x3822. Use
dec2hex to convert the value in info.subfamily to
standard notation. For example

dec2hex(info.subfamily)
produces '67' when the processor is a member of the 67xx
processor family.

info.timeout Integer Default timeout value MATLAB uses when transferring
data to and from CCS. All functions that use a timeout
value have an optional timeout input argument. When
you omit the optional argument, MATLAB uses this
default value—10s.
3-123

info
info = info(rx) returns info as a cell arraying containing the names of your
open RTDX channels.

Using info with multiprocessor boards
Method info works with targets that have more than one processor by
returning the information for each processor accessed by the cc object you
created with ccsdsp. The structure of information returned is identical to the
single processor case, for every included processor.

Examples On a PC with a simulator configured in CCS IDE, info returns the
configuration for the processor being simulated:

info(cc)

ans =

 procname: 'CPU'
 isbigendian: 0
 family: 320
 subfamily: 103
 timeout: 10

In this example, we are simulating the TMS320C6211 processor running in
little-endian mode. When you use CCS Setup Utility to change the processor
from little-endian to big-endian, info shows the change.

info(cc)

ans =

 procname: 'CPU'
 isbigendian: 1
 family: 320
 subfamily: 103
 timeout: 10

If you have two open channels, chan1 and chan2,

info = info(rx)
3-124

info
returns

info =
'chan1'
'chan2'

where info is a cell array. You can dereference the entries in info to
manipulate the channels. For example, you can close a channel by
dereferencing the channel in info in the close function syntax.

close(rx.info{1,1})

See Also ccsdsp, dec2hex, get, set
3-125

insert
3insertPurpose Add a debug point to a source file or address in Code Composer Studio

insert(cc,addr,'type')
insert(cc,addr)
insert(cc,filename,line,'type')
insert(cc,filename,line)

Description insert(cc,addr,type) adds a debug point located at the memory address
identified by addr for your target digital signal processor. The link cc identifies
which target has the debug point to insert. CCS provides several types of debug
points. Options for type include the following strings to define Breakpoints,
Probe Points, and Profile points:

• 'break' — add a Breakpoint. It defines a point at which program execution
stops.

• ' ' — same as 'break'.

• 'probe' — add a Probe Point that updates a CCS window during program
execution. When CCS connects your probe point to a window, the window
gets updated only when the executing program reaches the Probe Point.

• 'profile' — add a point in an executing program at which CCS gathers
statistics about events that occurred since encountering the previous profile
point, or from the start of your program.

Enter addr as a hexadecimal address, not as a C function name, valid C
expression, or a symbol name.

To learn more about the behavior of the various debugging points refer to your
CCS documentation.

insert(cc,addr) is the same as the previous syntax except the type string
defaults to 'break' for inserting a Breakpoint.

insert(cc,filename,line,'type') lets you specify the line where you are
inserting the debug point. line, in decimal notation, specifies the line number
in filename in CCS where you are adding the debug point. To identify the
source file, filename contains the name of the file in CCS, entered as a string
in single quotation marks. type accepts one of three strings — break, probe, or
profile — as defined previously. When the line or file you specified does not
3-126

insert
exist, the MATLAB Link for Code Composer Studio returns an error explaining
that it could not insert the debug point.

insert(cc,filename,line) defaults to type 'break' to insert a breakpoint.

Example Open a project in CCS IDE, such as volume.pjt in the tutorial folder where
you installed CCS IDE. Although you can do this from CCS IDE, use the
MATLAB Link for Code Composer Studio functions to open the project and
activate the appropriate source file where you add the breakpoint. Remember
to load the program file volume.out so you can access symbols and their
addresses.

cd (cc,'c:\ti\tutorial\sim62xx\volume1') % Default install;
wd=cd(cc);

wd =

c:\ti\tutorial\sim62xx\volume1

open(cc,'volume.pjt');

build(cc, 30);

Now add a breakpoint and a probe point.

insert(cc,15424,'break') % Adds a breakpoint at symbol main
insert(cc,'volume.c',47,'probe') % Adds a probe point on line 47

Switch to CCS IDE and open volume.c. Note the blue diamond and red circle
in the left margin of the volume.c listing. Red circles indicate Breakpoints and
blue diamonds indicate Probe Points.

Use symbol to return a structure listing the symbols and their addresses for the
current program file. symbol returns a structure that contains all the symbols.
To display all the symbols with addresses, use a loop construct like the
following:

for k=1:length(s),disp(k),disp(s(k)),end

where structure s holds the symbols and addresses.

See Also address, delete, run
3-127

isenabled
3isenabledPurpose Determine whether an RTDX link is enabled for communications

Syntax isenabled(rx,'channel')
isenabled(rx)

Description isenabled(rx,'channel') returns ans=1 when the RTDX channel specified by
string 'channel' is enabled for read or write communications. When 'channel'
has not been enabled, isenabled returns ans=0.

isenabled(rx) returns ans=1 when RTDX has been enabled, independent of
any channel. When you have not enabled RTDX you get ans=0 back.

Important requirements for using isenabled
On the target side, isenabled depends on RTDX to determine and report the
RTDX status. Therefore the you must meet the following requirements to use
isenabled.

1 The target must be running a program when you query the RTDX interface.

2 You must enable the RTDX interface before you check the status of
individual channels or the interface.

3 Your target program must be polling periodically for isenabled to work.

Note For isenabled to return reliable results, your target must be running
a loaded program. When the target is not running, isenabled returns a status
that may not represent the true state of the link or RTDX.

Examples With a program loaded on your target, you can determine whether RTDX
channels are ready for use. restart your program to be sure it is running. The
target must be running for isenabled to work, as well as for enabled to
work.In this example, we created a link cc to begin.

cc.restart
cc.run('run');
cc.rtdx.enable('ichan');
cc.rtdx.isenabled('ichan')
3-128

isenabled
MATLAB returns 1 indicating that your channel 'ichan' is enabled for RTDX
communications. To determine the mode for the channel, use cc.rtdx to
display the properties of link cc.rtdx.

See Also clear, disable, enable
3-129

isreadable
3isreadablePurpose Determine if MATLAB can read the specified memory block

Syntax isreadable(cc,address,'datatype', count)
isreadable(cc,address,'datatype')
isreadable(rx,'channel')

Description isreadable(cc,address,'datatype',count) returns 1 if the processor
referred to by cc can read the memory block defined by the address, count, and
datatype input arguments. When the processor cannot read any portion of the
specified memory block, isreadable returns 0. Notice that you use the same
memory block specification for this function as you use for the read function.
The data block being tested begins at the memory location defined by address.
count determines the number of values to be read. datatype defines the format
of data stored in the memory block. isreadable uses the datatype string to
determine the number of bytes to read per stored value. For details about each
input parameter, read the following descriptions.

address — isreadable uses address to define the beginning of the memory
block to read. You provide values for address as either decimal or hexadecimal
representations of a memory location in the target processor. The full address
at a memory location consists of two parts: the offset and the memory page,
entered as a vector [location, page], a string, or a decimal value. In cases
where the processor has only one memory page, as is true for many digital
signal processors, the page portion of the memory address is 0. By default,
ccsdsp sets the page to 0 at creation if you omit the page property as an input
argument to set the page parameter. For processors that have one memory
page, setting the page value to 0 lets you specify all memory locations in the
processor using just the memory location without the page value.

Table 3-3: Examples of Address Property Values

Property
Value

Address Type Interpretation

'1F' String Location is 31 decimal on the page
referred to by cc(page)
3-130

isreadable
To specify the address in hexadecimal format, enter the address property
value as a string. isreadable interprets the string as the hexadecimal
representation of the desired memory location. To convert the hex value to a
decimal value, the function uses hex2dec. Note that when you use the string
option to enter the address as a hex value, you cannot specify the memory page.
For string input, the memory page defaults to the page specified by cc(page).

count — a numeric scalar or vector that defines the number of datatype values
to test for being readable. To assure parallel structure with read, count can be
a vector to define multidimensional data blocks. This function always tests a
block of data whose size is the product of the dimensions of the input vector.

datatype — a string that represents a MATLAB data type. The total memory
block size is derived from the value of count and the datatype you specify.
datatype determines how many bytes to check for each memory value.
isreadable supports the following data types:

10 Decimal Address is 10 decimal on the page
referred to by cc(page)

[18,1] Vector Address location 10 decimal on memory
page 1 (cc(page) = 1)

datatype String Number of Bytes/Value Description

'double' Double-precision floating
point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating
point data

Table 3-3: Examples of Address Property Values

Property
Value

Address Type Interpretation
3-131

isreadable
Like the iswritable, write, and read functions, isreadable checks for valid
address values. Illegal address values would be any address space larger than
the available space for the processor—232 for the C6xxx processor family and
216 for the C5xxx series. When the function identifies an illegal address, it
returns an error message stating that the address values are out of range.

isreadable(cc,address,'datatype') returns 1 if the processor referred to
by cc can read the memory block defined by the address, and 'datatype' input
arguments. When the processor cannot read any portion of the specified
memory block, isreadable returns 0. Notice that you use the same memory
block specification for this function as you use for the read function. The data
block being tested begins at the memory location defined by address. When you
omit the count option, count defaults to one.

isreadable(rx,'channel') returns a 1 when the RTDX channel specified by
the string 'channel', associated with link rx, is configured for 'read' operation.
When 'channel' is not configured for reading, isreadable returns 0.

Like the iswritable, read, and write functions, isreadable checks for valid
address values. Illegal address values would be any address space larger than
the available space for the processor—232 for the C6xxx processor family and
216 for the C5xxx series. When the function identifies an illegal address, it
returns an error message stating that the address values are out of range.

Note isreadable relies on the memory map option in CCS IDE. If you did
not properly define the memory map for the processor in CCS IDE,
isreadable does not produce useful results. Refer to your Code Composer
Studio documentation for more information on configuring memory maps.

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

datatype String Number of Bytes/Value Description
3-132

isreadable
Examples When you write scripts to run models in MATLAB and CCS IDE, the
isreadable function is very useful. Use isreadable to check that the channel
from which you are reading is configured properly.

cc = ccsdsp;
rx = cc.rtdx;

% Define read and write channels to the target linked by cc.
open(rx,'ichannel','r');s
open(rx,'ochannel','w');
enable(rx,'ochannel');
enable(rx,'ichannel');

isreadable(rx,'ochannel')
ans=

0
isreadable(rx,'ichannel')
ans=

1

Now that your script knows that it can read from 'ichannel', it proceeds to read
messages as required.

See Also hex2dec, iswritable, read
3-133

isrtdxcapable
3isrtdxcapablePurpose Determine whether the target processor supports RTDX

Syntax b=isrtdxcapable(cc)

Description b=isrtdxcapable(cc) returns b=1 when the target processor referenced by
link cc supports Real-Time Data Exchange (RTDX). When the target does not
support RTDX, isrtdxcapable returns b=0.

Using isrtdxcapable with multiprocessor boards
When your target board contains more than one processor, isrtdxcapable
checks each processor on the target, as defined by the cc object, and returns the
RTDX capability for each processor on the board. In the returned variable b,
you see a vector that contains the information for each accessed processor.

Examples Create a link to your C6701EVM. Test to see if the processor on the board
supports RTDX. It should.

cc=ccsdsp; %Assumes you have one board and it is the C6701 EVM
b=isrtdxcapable(cc)
b =

1

3-134

isrunning
3isrunningPurpose Test whether the target processor is executing a process

Syntax isrunning(cc)

Description isrunning(cc) returns 1 when the target processor is executing a program.
When the processor is halted, isrunning returns 0.

Using isrunning with multiprocessor boards
When your target board contains more than one processor, isrunning checks
each processor on the target, as defined by the cc object, and returns the state
for each processor on the board. In the returned variable b, you see a vector that
contains the information for each accessed processor.

By providing a return variable, as shown here

b = isrunning(cc)

b contains a vector that holds the information about the state of all processors
accessed by cc.

Examples isrunning lets you determine whether the target processor is running. After
you load a program to the target, use isrunning to be sure the program is
running before you enable RTDX channels.

cc = ccsdsp;

isrunning(cc)

ans =

 0
% Load a program to the target.

run(cc)
isrunning(cc)

ans =

 1
3-135

isrunning
halt(cc)
isrunning(cc)

ans =

 0

See Also halt, restart, isrunning
3-136

isvisible
3isvisiblePurpose Test whether CCS IDE is running on the PC

Syntax isvisible(cc)

Description isvisible(cc) determines whether CCS IDE is running on the desktop and
the window is open. If CCS IDE window is open, isvisible returns 1.
Otherwise, the result is 0 indicating that CCS IDE is either not running or is
running in the background.

Examples Test to see if CCS IDE is running. Start by launching CCS IDE. Then open
MATLAB. At the prompt, enter

cc=ccsdsp

CCSDSP Object:
 API version = 1.0
 Processor type = C67
 Processor name = CPU
 Running? = No
 Board number = 0
 Processor number= 0
 Default timeout = 10.00 secs

RTDX Object:
 Timeout: 10.00 secs
 Number of open channels: 0

MATLAB creates a link to CCS IDE and leaves CCS IDE visible on your
desktop.

isvisible(cc)

ans =

 1

Now, change the visibility state to 0, or invisible, and check the state.

visible(cc,0)
isvisible(cc)
3-137

isvisible
ans =

 0

Notice that CCS IDE is not visible on your desktop. Recall that MATLAB did
not open CCS IDE. When you close MATLAB with CCS IDE in this invisible
state, CCS IDE remains running in the background. The only ways to close it
are either

• Launch MATLAB. Create a new link to CCS IDE. Use the new link to make
CCS IDE visible. Close CCS IDE.

• Open Windows Task Manager. Click Processes. Find and highlight
cc_app.exe. Click End Task.

See Also info, visible
3-138

iswritable
3iswritablePurpose Determine if MATLAB can write to the specified memory block

Syntax iswritable(cc,address,'datatype',count)
iswritable(cc,address,'datatype')

Description iswritable(cc,address,'datatype',count) returns 1 if MATLAB can write
to the memory block defined by the address, count, and datatype input
arguments on the processor referred to by cc. When the processor cannot write
to any portion of the specified memory block, iswritable returns 0. Notice that
you use the same memory block specification for this function as you use for the
write function. The data block being tested begins at the memory location
defined by address. count determines the number of values to write. datatype
defines the format of data stored in the memory block. iswritable uses the
datatype parameter to determine the number of bytes to write per stored
value. For details about each input parameter, read the following descriptions.

address — iswritable uses address to define the beginning of the memory
block to write to. You provide values for address as either decimal or
hexadecimal representations of a memory location in the target processor. The
full address at a memory location consists of two parts: the offset and the
memory page, entered as a vector [location, page], a string, or a decimal
value. In cases where the processor has only one memory page, as is true for
many digital signal processors, the page portion of the memory address is 0. By
default, ccsdsp sets the page to 0 at creation if you omit the page property as
an input argument to set the page parameter.

For processors that have one memory page, setting the page value to 0 lets you
specify all memory locations in the processor using the memory location
without the page value.

Table 3-4: Examples of Address Property Values

Property
Value

Address Type Interpretation

'1F' String Location is 31 decimal on the page
referred to by cc(page)
3-139

iswritable
To specify the address in hexadecimal format, enter the address property value
as a string. iswritable interprets the string as the hexadecimal
representation of the desired memory location. To convert the hex value to a
decimal value, the function uses hex2dec. Note that when you use the string
option to enter the address as a hex value, you cannot specify the memory page.
For string input, the memory page defaults to the page specified by cc(page).

count—a numeric scalar or vector that defines the number of datatype values
to test for being writable. To assure parallel structure with write, count can
be a vector to define multidimensional data blocks. This function always tests
a block of data whose size is the total number of elements in matrix specified
by the input vector. If count is the vector [10 10 10]

iswritable(cc,31,[10 10 10])

iswritable writes 1000 values (10*10*10) to the target processor. For a
2-dimensional matrix defined with count as

iswritable(cc,31,[5 6])

iswritable writes 30 values to the processor.

datatype—a string that represents a MATLAB data type. The total memory
block size is derived from the value of count and the specified datatype.

10 Decimal Address is 10 decimal on the page
referred to by cc(page)

[18,1] Vector Address location 10 decimal on memory
page 1 (cc(page) = 1)

Table 3-4: Examples of Address Property Values (Continued)

Property
Value

Address Type Interpretation
3-140

iswritable
datatype determines how many bytes to check for each memory value.
iswritable supports the following data types:

iswritable(cc,address,'datatype') returns 1 if the processor referred to
by cc can write to the memory block defined by the address, and count input
arguments. When the processor cannot write any portion of the specified
memory block, iswritable returns 0. Notice that you use the same memory
block specification for this function as you use for the write function. The data
block tested begins at the memory location defined by address. When you omit
the count option, count defaults to one.

Note iswritable relies on the memory map option in CCS IDE. If you did
not properly define the memory map for the processor in CCS IDE, this
function does not produce useful results. Refer to your Code Composer Studio
documentation for more information on configuring memory maps.

Like the isreadable, read, and write functions, iswritable checks for valid
address values. Illegal address values would be any address space larger than
the available space for the processor—232 for the C6xxx processor family and
216 for the C5xxx series. When the function identifies an illegal address, it
returns an error message stating that the address values are out of range.

datatype String Description

'double' Double-precision floating point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating point data

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers
3-141

iswritable
Examples When you write scripts to run models in MATLAB and CCS IDE, the
iswritable function is very useful. Use iswritable to check that the channel
to which you are writing to is indeed configured properly.

cc = ccsdsp;
rx = cc.rtdx;

% Define read and write channels to the target linked by cc.
open(rx,'ichannel','r');
open(rx,'ochannel','w');
enable(rx,'ochannel');
enable(rx,'ichannel');

iswritable(rx,'ochannel')
ans=

1
iswritable(rx,'ichannel')
ans=

0

Now that your script knows that it can write to 'ichannel', it proceeds to write
messages as required.

See Also hex2dec, iswritable, read
3-142

list
3listPurpose Return various information listings from Code Composer Studio

Syntax list(ff,varname)
infolist = list(cc,type)
infolist = list(cc,type,option)

Description list(ff,varname) lists the local variables associated with the function
accessed by function object ff. Compare to list(cc,'variable','varname')
which works the same way to return variables from link object cc.

Note list does not recognize or return information about variables that you
declare in your code but that are not used or initialized.

Some restrictions apply when you use list with function objects. list
generates an error in the following circumstances:

• when varname is not a valid input argument for the function accessed by ff

For example, if your function declaration is
int foo(int a)

but you request information about input argument b, which is not defined
list(ff,'b')

MATLAB returns an error.

• when varname is the same as a variable assigned by MATLAB. Usually this
happens when you use declare to pass a function declaration to MATLAB
and the declaration string does not match the declaration for ff as
determined when you created ff.

In an example that demonstrates this problem, the function declaration has
a name for the first input, a. In the declare call, the declaration string does
not provide a name for the first input, just a data type, int. When you issue
the declare call, MATLAB names the first input ML_Input1. If you try to use
list to get information about the input named ML_Input, list returns an
error. Here is the code, starting with the function declaration in your code:
int foo(int a) % Function declaration in your source code
declare(ff,'decl','int foo(int)')
3-143

list
% MATLAB generates a warning that it has assigned the name
% ML_Input to the first input argument
list(ff,'ML_Input') % list returns an error for this call

• when varname does not match the input name in the function declaration
provided in your source code, as compared to the declaration string you used
in a declare operation.

Assume your source code includes a function declaration for foo:
int foo(int a);

Now pass a declaration for foo to MATLAB:
declare(ff,'decl','int foo(int b)')

MATLAB issues a warning that the input names do not match. When you
use list on the input argument b

list(ff,'b')

list returns an error.

• when varname is an input to a library function. list always fails in this case.
It does not matter whether you use declare to provide the declaration string
for the library function.

Note When you call list for a variable in a function object
list(ff,varname)

the address field may contain an incorrect address if the program counter is
not within the scope of the function that includes varname when you call list.

infolist = list(cc,type) reads information about your Code Composer Studio
session and returns it in infolist. Different types of information and return
formats are possible depending on the input arguments you supply to the list
function call. The type argument specifies which information listing to return.
To determine the information that list returns, use one of the following as the
type parameter string:

• project—tell list to return information about the current project in CCS.
3-144

list
• variable—tell list to return information about one or more embedded
variables.

• globalvar—tell list to return information about one or more global
embedded variables.

• function—tell list to return details about one or more functions in your
project.

• type—tell list to return information about one or more defined data types,
including struct, enum, and union. C data type typedefs are excluded from
the list of data types.

Note, the list function returns dynamic Code Composer information that can
be altered by the user. Returned listings represent snapshots of the current
Code Composer studio configuration only. Be aware that earlier copies of
infolist might contain stale information.

infolist = list(cc,'project') returns a vector of structures containing
project information in the format shown here when you specify option type as
project.

infolist Structure Element Description

infolist(1).name Project file name (with path).

infolist(1).type Project type—'project','projlib',
or 'projext', see new

infolist(1).targettype String Description of Target CPU

infolist(1).srcfiles Vector of structures that describes
project source files. Each structure
contains the name and path for
each source file—
infolist(1).srcfiles.name
3-145

list
infolist = list(cc,'variable') returns a structure of structures that
contains information on all local variables within scope. The list also includes
information on all global variables. Note, however, that if a local variable has
the same symbol name as a global variable, list returns the information about
the local variable.

infolist = list(cc,'variable',varname) returns information about the
specified variable varname.

infolist = list(cc,'variable',varnamelist) returns information about
variables in a list specified by varnamelist. The returned information in each
structure follows the format below when you specify option type as variable:

infolist(1).buildcfg Vector of structures that describe
build configurations, each with the
following entries:

• infolist(1).buildcfg.name—
the build configuration name

• infolist(1).buildcfg.outpath
—the default directory for
storing the build output.

infolist(2). …

infolist(n). …

infolist Structure Element Description

infolist.varname(1).name Symbol name

infolist.varname(1).isglobal Indicates whether symbol is global
or local

 infolist.varname(1).location Information about the location of the
symbol

 infolist.varname(1).size Size per dimension

infolist Structure Element Description
3-146

list
list uses the variable name as the fieldname to refer to the structure
information for the variable.

infolist = list(cc,'globalvar') returns a structure that contains
information on all global variables.

infolist = list(cc,'globalvar',varname) returns a structure that contains
information on the specified global variable.

infolist = list(cc,'globalvar',varnamelist) returns a structure that
contains information on global variables in the list. The returned information
follows the same format as the syntax infolist = list(cc,'variable',...).

infolist = list(cc,'function') returns a structure that contains information
on all functions in the embedded program.

infolist = list(cc,'function',functionname) returns a structure that
contains information on the specified function functionname.

infolist = list(cc,'function',functionnamelist) returns a structure that
contains information on the specified functions in functionnamelist. The

infolist.varname(1).uclass ccsdsp object class that matches the
type of this symbol

infolist.varname(1).bitsize Size in bits. More information is
added to the structure depending on
the symbol type.

 infolist.(varname1).type data type of symbol

infolist.varname(2). ...

infolist.varname(n). ...

infolist Structure Element Description
3-147

list
returned information follows the format below when you specify option type as
function:

To refer to the function structure information, list uses the function name as
the field name.

infolist = list(cc,'type') returns a structure that contains information on
all defined data types in the embedded program. This method includes struct,

infolist Structure Element Description

 infolist.functionname(1).name Function name

 infolist.functionname(1).filename Name of file where function is
defined

infolist.functionname(1).address Relevant address information
such as start address and end
address

infolist.functionname(1).funcvar Variables local to the function

infolist.functionname(1).uclass ccsdsp object class that
matches the type of this symbol
- 'function'

infolist.functionname(1).funcdecl Function declaration—where
information such as the
function return type is
contained

infolist.functionname(1).islibfunc Is this a library function?

infolist.functionname(1).linepos Start and end line positions of
function

 infolist.functionname(1).funcinfo Miscellaneous information
about the function

infolist.functionname(2). ...

infolist.functionname(n). …
3-148

list
enum and union data types and excludes typedefs. The name of a defined type
is its C struct tag, enum tag or union tag. If the C tag is not defined, it is
referred to by the Code Composer Studio compiler as '$faken' where n is an
assigned number.

infolist = list(cc,'type',typename) returns a structure that contains
information on the specified defined data type.

infolist = list(cc,'type',typenamelist) returns a structure that contains
information on the specified defined data types in the list. The returned
information follows the format below when you specify option type as type:

For the field name, list uses the type name to refer to the type structure
information.

Important—when a variable name, type name, or function name is not a valid
MATLAB structure field name, list replaces or modifies the name so it
becomes valid.

Note In fieldnames that contain the invalid dollar character ‘$’, list
replaces the ‘$’ with ‘DOLLAR.’

infolist Structure Element Description

 infolist.typename(1).type Type name

infolist.typename(1).size Size of this type

infolist.typename(1).uclass ccsdsp object class that matches
the type of this symbol. Additional
information is added depending on
the type

infolist.typename(2). ...

infolist.typename(n). ...
3-149

list
Note Changing the MATLAB field name does not change the name of the
embedded symbol or type.

Examples This first example shows list used with a variable, providing information
about the variable varname. Notice that the invalid fieldname
'_with_underscore' gets changed to 'Q_with_underscore.' To make the invalid
name valid, list inserts the character ‘Q’ before the name.

varname1 = '_with_underscore'; % invalid fieldname
list(cc,'variable',varname1);
ans =

Q_with_underscore : [varinfo]
ans. Q_with_underscore
ans=

name: '_with_underscore'
isglobal: 0

 location: [1x62 char]
size: 1

uclass: 'numeric'
 type: 'int'

bitsize: 16

To demonstrate using list with a defined C type, variable typename1 includes
the type argument. Since valid fieldnames cannot contain the $ character, list
changes the $ to DOLLAR.

typename1 = '$fake3'; % name of defined C type with no tag
list(cc,'type',typename1);
ans =

DOLLARfake0 : [typeinfo]

ans.DOLLARfake0=

type: 'struct $fake0'
size: 1
3-150

list
uclass: 'structure'
sizeof: 1
members: [1x1 struct]

When you request information about a project in CCS, you see a listing like the
following that includes structures containing details about your project.

projectinfo=list(cc,'project')

projectinfo =

 name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt'
 type: 'project'
 targettype: 'TMS320C67XX'
 srcfiles: [69x1 struct]
 buildcfg: [3x1 struct]

See Also info
3-151

load
3loadPurpose Transfer a program file (*.out, *.obj) to the target processor in the active
project

Syntax load(cc,'filename',timeout)
load(cc,'filename')
load(cc,'gelfilename',timeout)

Description load(cc,'filename',timeout) loads the file specified by filename into the
target processor. filename can include a full path to a file, or just the name of
a file that resides in the Code Composer Studio (CCS) working directory. Use
cd to check or modify the working directory. Only use load with program files
that are created by the Code Composer Studio build process.

timeout defines the upper limit on how long MATLAB waits for the load
process to be complete. If this period is exceeded, load returns immediately
with a timeout error.

load(cc,'filename') loads the file specified by filename into the target
processor. filename can include a full path to a file, or just the name of a file
that resides in the Code Composer Studio (CCS) working directory. Use cd to
check or modify the working directory. Only use load with program files that
are created by the Code Composer Studio build process. timeout defaults to the
global value you set when you created link cc.

Note load disables all open channels. Open channels revert to disabled.

load(cc,'gelfilename',timeout) loads and opens the general extension
language (GEL) file named gelfilename into CCS, in the active project.
gelfilename needs to be the full path to the file, or just the file name if the file
already shows up in your CCS workspace or project. load adds the GEL file to
the active project only. To make a different project active so you can add your
GEL file to it, use active.

The timeout option is not required, as is true for most methods in the product.
Using load to add a GEL file is identical to using the File->Load GEL… option
in Code Composer Studio IDE. Your loaded GEL file appears in the GEL files
folder in CCS. To remove GEL files, use remove. You can load any GEL file—
3-152

load
you must be sure the GEL file is the correct one. load does not attempt to verify
whether the GEL file is appropriate for your hardware or project.

Examples Taken from the CCS link tutorial, this code prepares for and loads an object file
filename.out to a target processor.

projfile =...
fullfile(matlabroot,'directoryname','directoryname','filename')
projpath = fileparts(projfile)
open(cc,projfile) % Open project file
cd(cc,projpath) % Change Code Composer working directory

Now use CCS IDE to build your file. Select Project->Build from the menu bar
in CCS IDE.

With the project build complete, load your .out file by typing

load(cc,'filename.out')

See Also cd, dir, open
3-153

msgcount
3msgcountPurpose Return the number of messages in a read-enabled channel queue

Syntax msgcount(rx,'channel')

Description msgcount(rx,'channel') returns the number of unread messages in the
read-enabled queue specified by channel for the RTDX link rx. You cannot use
msgcount on channels configured for write access.

Examples If you have created and loaded a program to the target processor, you can write
data to the target, then use msgcount to determine the number of messages in
the read queue.

1 Create and load a program to the target.

2 Write data to the target from MATLAB.
indata=1:100;
writemsg(cc.rtdx,'ichannel', int32(indata));

3 Use msgcount to determine the number of messages available in the queue.
num_of_msgs = msgcount(cc.rtdx,'ichannel')

See Also read, readmat, readmsg
3-154

new
3newPurpose Create and open a new text file, project, or build configuration in CCS IDE

Syntax new(cc,'objectname','type')
new(cc,'objectname')

Description new(cc,'objectname','type') creates and opens an empty object of type
named objectname in the active project in CCS IDE. The new object can be a
text file, a project, or a build configuration. String objectname specifies the
name of the new object. When you create new text files or projects, objectname
can include a full path description. When you save your new project or file, CCS
IDE stores the file at the target of the full path.

If you do not provide a full path for your file, new stores the file in the CCS IDE
working directory when you save it. New files open as active windows in CCS
IDE; they are not placed in the active project folders based on their file
extension (compare to add).

New build configurations always become part of the active project in CCS IDE.
Since build configurations always become part of a project, you only need to
enter a name to distinguish your new configuration from existing
configurations in the project, such as Debug and Release.

To specify the text file or project to create, objectname must be the full
pathname to the file, unless your file is in a directory on your MATLAB path,
or the file is in your CCS working directory. Also, when you create new text files
or projects, you must include the file extension in objectname.

type accepts one of four strings or entries listed in the following table.

type String Description

'text' Create a new text file in the active project.

'project' Create a new project.

'projext' Create a new CCS external make project. Using
this option indicates that your project uses and
external makefile. Refer to your CCS
documentation for more information about
external projects.
3-155

new
Use new to create the following file types listed in the following table.

Caution After you create an object in CCS IDE, save the file in CCS IDE. new
does not automatically save the file. Failing to save the file can cause you to
lose your changes when you close CCS IDE.

new(cc,'objectname') creates a project in CCS IDE, making it the active
project. When you omit the type option, new assumes you are creating a new

'projlib' Create a new library project with the .lib file
extension. Refer to your CCS documentation for
more information about library projects.

[] Create a new project. The [] indicate that you
are creating a .pjt file.

'buildcfg' Create a new build configuration in the active
project.

File Types and Extensions Supported by new and CCS IDE

File Type Created Supported Extensions type String Used

C/C++ source files .c, .cpp, .cc, .ccx, .sa 'text'

Assembly source files .a*, .s* (excluding .sa,
refer to C/C++ source
files)

'text'

Object and Library files .o*, .lib 'text'

Linker command file .cmd 'text'

Project file .pjt 'project'

Build configuration No extension 'buildcfg'

type String Description
3-156

new
project and appends the .pjt extension to objectname to create the project
objectname.pjt. The .pjt extension is the only extension new recognizes.

Examples When you need a new project, create a link to CCS IDE and use the link to
make a new project in CCS IDE.

cc=ccsdsp;
cc.visible(1) % Make CCS IDE visible on your desktop (optional).
new(cc,'my_new_project.pjt','project');

New files of various types result from using new to create new active windows
in CCS IDE. For instance, make a new C source file in CCS IDE with the
following command:

new(cc,'new_source.c','text');

In CCS IDE you see your new file as the active window.

See Also activate, close, save
3-157

open
3openPurpose Open a channel to a target processor or load a file into CCS IDE

Syntax open(rx,'channel1','mode1','channel2','mode2',...)
open(rx,'channel','mode')
open(cc,filename,filetype,timeout)
open(cc,filename,filetype)
open(cc,filename)

Description open(rx,'channel1','mode1','channel2','mode2',...) opens new RTDX
channels associated with the link rx. Each new channel uses the string name
channel1, channel2, and so on. For each channel, open configures the
channel according to the associated mode string. Channel1 uses mode1;
channel2 uses mode2, and so forth. Mode strings are either:

• 'r' — configure the channel to read data from the target processor.

• 'w' — configure the channel for writing data to the target processor.

open(rx,channel,mode) opens a new channel to the processor associated with
the link rx. The new channel uses the channel string and is configured for
reading or writing according to the mode string.

open(cc,filename,filetype,timeout) loads filename into CCS IDE.
filename can be the full path to the file or, if the file is in the current CCS IDE
working directory, you can use a relative path, such as the name of the file. Use
cd to determine or change the CCS IDE working directory. You use the
filetype option to override the default file extension. Four filetype strings
work in this function syntax.

filetype String Extension Description

'program' .out Executable programs for the target
processor

'project' .c, .a*, .s*, .o*,
.lib, .cmd,.mak

CCS IDE project files

'text' any All text files

'workspace' .wks CCS IDE workspace files
3-158

open
To let you determine how long MATLAB waits for open to load the file into CCS
IDE, timeout sets the upper limit, in seconds, for the period MATLAB waits for
the load. If MATLAB waits more than timeout seconds, load returns
immediately with a timeout error. REturning a timeout error does not suspend
the operation; it stops MATLAB from waiting for confirmation for the operation
completion.

open(cc,filename,filetype) loads filename into CCS IDE. filename can be
the full path to the file or, if the file is in the current CCS IDE working
directory, you can use a relative path, such as the name of the file. Use the cd
function to determine or change your CCS IDE working directory. You use the
filetype option to override the default file extension. Refer to the previous
syntax for more information about filetype. When you omit the timeout
option in this syntax, MATLAB uses the global timeout set in cc.

open(cc,filename) loads filename into CCS IDE. filename can be the full
path to the file or, if the file is in the current CCS IDE working directory, you
can use a relative path, such as the name of the file. Use the cd function to
determine or change the CCS IDE working directory. You use the filetype
option to override the default file extension. Refer to the previous syntax for
more information about filetype. When you omit the filetype and timeout
options in this syntax, MATLAB uses the global timeout set in cc, and derives
the file type from the extension in filename. Refer to the previous syntax
descriptions for more information on the input options.

Channels must be opened and enabled before you use them. You cannot write
to or read from channels that you opened but did not enable.

Note program files (.out extension) and project files (.mak extension) get
loaded on the target processor referenced by your CCS IDE link. Workspace
files are coupled to a specific target processor. As a result, open loads
workspace files to the target processor that was active when you created the
workspace file. This may not be the processor referred to by the CCS IDE link.

Examples For RTDX use, open forms part of the function pair you use to open and enable
a communications channel between MATLAB and your target processor.
3-159

open
cc = ccsdsp;
rx = cc.rtdx;
open(rx,'ichannel','w');
enable(rx,'ichannel');

When you are working with CCS IDE, open adopts a different operational form
based on your input arguments for filename and the optional arguments
filetype and timeout. In the CCS IDE variant, open loads the specified file
into CCS IDE. For example, to load the tutorial program used in “Tutorial
1-1—Using Links and Embedded Objects”, use the following syntax

cc = ccsdsp;
cc.load(tutorial_6xevm.out);

See Also cd, dir, load
3-160

profile
3profilePurpose Return code profiling information from executing code with or without
DSP/BIOS

Syntax ps=profile(cc,'option',timeout)
ps=profile(cc,'option')
ps=profile(cc)

Description ps=profile(cc,'option',timeout) returns generated code profile
measurements from the statistics timing objects (STS) that you defined in CCS
IDE. Structure ps contains the information in either raw form or filtered and
formatted into fields. STS objects are a service provided by the DSP/BIOS
real-time kernel that can help you profile and track the way your code runs. For
details about STS objects and DSP/BIOS, refer to your Texas Instruments
documentation that came with CCS IDE.

To let you to define how to return the information from your STS objects,
profile supports three formatting options for the contents of structure ps.

option String Description

'raw' Returns an unformatted list of the STS timing
objects information. All time-based objects get
returned and formatted.
3-161

profile
When you choose 'raw', variable ps contains an undocumented list of the
information provided by CCS IDE. The 'tic' option provides the same
information in ps, as a collection of fields.

'report' Returns the same data as the 'raw' option, formatted
into an HTML report. Works only on projects that
include DSP/BIOS. If you own Embedded Target for
TI C6000 DSP, profile(cc,'report') provides
more information about code you generate from
Simulink models, using data from the STS objects
that are part of DSP/BIOS instrumentation. Refer
to “Profiling Code” in your Embedded Target for TI
C6000 DSP documentation for more information.

'tic' Returns a formatted list of the STS timing objects
information. Filters out some of the information
returned with the 'raw' option. To be returned by
this option, the object must be time-based.
User-defined objects are not returned. Use raw to
see user-defined objects.

Fields in ps Description

ps.cpuload Execution time in percent of total time spent out of
the idle task.

ps.sts Vector of defined STS objects in the project.

ps.sts(n).name User-defined name for an STS object sts(n). Value
for n ranges from 1 to the number of defined STS
objects.

ps.sts(n).units Either ‘Hi Time’ or ‘Low Time.’ Describes the timer
applied by this STS object, whether high- or low-
resolution time based.

ps,sts(n).max Maximum measured profile period for sts(n), in
seconds.

option String Description
3-162

profile
Note For the information gathered during the reporting periods to be
accurate, your CLK and STS must be configured correctly for your target. Use
the DSP/BIOS configuration file to add and configure CLK and STS objects for
your project.

With projects that you generate that use DSP/BIOS, the report option creates
a report that contains all of the information provided by the other options, plus
additional data that comes from DSP/BIOS instrumentation in the project. You
enable the DSP/BIOS report capability with the Profile performance at
atomic subsystem boundaries option on the TI C6000 Code Generation
option on the Real-Time Workshop pane of the Simulink Parameters dialog.

ps=profile(cc,'option') defaults to the timeout period specified in the link
cc.

ps=profile(cc) returns the profile information in ps as a formatted structure
of fields.

Example Since you use profile to view information about your application running on
your target, this example presents both forms of the data returned in ps. Open
and build one of the DSP/BIOS-enabled projects from the TI DSP/BIOS
Tutorial Module, such as volume.pjt located in the folder
ti\tutorial\target\volume2. When you specify the project to open, enter the
full pathname to the project file.

cc=ccsdsp;
open(cc,'..\tutorial\sim62xx\volume2\volume.pjt');
build(cc,'all')

ps.sts(n).avg Average measured profile period for sts(n), in
seconds.

ps.sts(n).count Number of STS measurements taken while
executing the program.

Fields in ps Description
3-163

profile
In CCS IDE, open the file volume.cdb that contains the DSP/BIOS
configuration. For details about STS and CLK objects, refer to your TI
documentation.

Review the settings for the existing CLK and STS objects already in place in
the project. When you use profile, the information returned comes from these
objects. Make any changes you require and save the DSP/BIOS configuration
file. Now rebuild your project, either in CCS IDE or from MATLAB, then load
the file volume.out generated by the build process. If you get a timeout error,
add the timeout option to the build command, specifying a long timeout period,
such as 60 seconds. Often, when you receive the timeout error the build has
been completed successfully.

build(cc,'all')
load(cc,'..\tutorial\sim62xx\volume2\debug\volume.out')

With the project built and loaded, run your program.

run(cc) % Assumes that volume2 is the active project.

Running profile returns structure ps containing STS and CLK information
that DSP/BIOS gathered while your program ran.

ps=profile(cc)

ps =

 cpuload: 0
 obj: [3x1 struct]

ps.obj(1)

ans =

 name: 'KNL_swi'
 units: 'Hi Time'
 max: 1.1759e-005
 avg: 2.7597e-006
 count: 29

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
 1
3-164

profile
 name: 'KNL_swi'
 units: 'Hi Time'
 max: 1.1759e-005
 avg: 2.7597e-006
 count: 29

 2

 name: 'processing_SWI'
 units: 'Hi Time'
 max: 1.1489e-005
 avg: 1.1474e-005
 count: 2

 3

 name: 'TSK_idle'
 units: 'Hi Time'
 max: -16.1465
 avg: 0
 count: 0

Omitting the format option caused profile to return the data fully formatted
and slightly filtered. Adding the 'raw' option to profile returns the same
information without filtering out any of the returned data.

ps=profile(cc,'raw')

ps =

 cpuload: 0
 error: 0
 avgperiod: 1000
 rate: 1000
 obj: [4x1 struct]

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
 1
3-165

profile
 name: 'KNL_swi'
 units: 'Hi Time'
 max: 1564
 total: 10644
 avg: 367.0345
 pdfactor: 0.0075
 count: 29

 2

 name: 'processing_SWI'
 units: 'Hi Time'
 max: 1528
 total: 3052
 avg: 1526
 pdfactor: 0.0075
 count: 2

 3

 name: 'TSK_idle'
 units: 'Hi Time'
 max: -2.1475e+009
 total: 0
 avg: 0
 pdfactor: 0.0075
 count: 0

 4

 name: 'IDL_busyObj'
 units: 'User Def'
 max: -2.1475e+009
 total: 0
 avg: 0
 pdfactor: 0
 count: 0

Your results can differ from this example depending on your computer and
target. In the raw data in this example, one extra timing object appears —
3-166

profile
IDL_busyObj. As defined in the .cdb file, this is not a time based object (Units
is 'User Def) and is not returned by specifying 'tic' as the format option in
profile.

See Also ccsdsp
3-167

read
3readPurpose Retrieve data from memory on the target processor or in CCS

Syntax mem = read(cc,address,'datatype',count,timeout)
mem = read(cc,address,'datatype',count)
mem = read(cc,address,'datatype')
data = read(objname)
data = read(objname,index)
data = read(objname,structindex)
data = read(objname,structindex,member)
data = read(objname,member)
data = read(objname,structindex,member,memberindex)
data = read()

Description Link Object Syntaxes

mem = read(cc,address,count,datatype,timeout) returns data from the
processor referred to by cc. The address, count, and datatype input
arguments define the memory block to be read. The data block to be read begins
at the memory location defined by address. count determines the number of
values to be read, starting at address. datatype defines the format of the raw
data stored in the referenced memory block.

read uses the datatype parameter to determine the number of bytes to read
per stored value. timeout is an optional input argument you use to specify
when to terminate long read processes and data transfers. For details about
each input parameter, read the following descriptions.

address — read uses address to define the beginning of the memory block to
read. You provide values for address as either decimal or hexadecimal
representations of a memory location in the target processor. The full address
at a memory location consists of two parts: the offset and the memory page,
entered as a vector [location, page], a string, or a decimal value. In cases
where the processor has only one memory page, as is true for many digital
signal processors, the page portion of the memory address is 0. By default,
ccsdsp sets the page to 0 at creation if you omit the page property as an input
argument to set the page parameter.
3-168

read
For processors that have one memory page, setting the page value to 0 lets you
specify all memory locations in the processor using just the memory location
without the page value.

To specify the address in hexadecimal format, enter the address property value
as a string. read interprets the string as the hexadecimal representation of the
desired memory location. To convert the hex value to a decimal value, the
function uses hex2dec. Note that when you use the string option to enter the
address as a hex value, you cannot specify the memory page. For string input,
the memory page defaults to the page specified by cc(page).

count — a numeric scalar or vector that defines the number of datatype values
to read. Entering a scalar for count causes read to return mem as a column
vector which has count elements. count can be a vector to define
multidimensional data blocks. The elements of count define the dimensions of
the data matrix returned in mem. The following table shows examples of input
arguments to count and how read responds.

Table 3-5: Examples of Address Property Values

Property
Value

Address Type Interpretation

'1F' String Offset is 31 decimal on the page
referred to by cc(page)

10 Decimal Offset is 10 decimal on the page
referred to by cc(page)

[18,1] Vector Offset is 18 decimal on memory page 1
(cc(page) = 1)

Input Response

n Read n values into a column vector. Return the vector in
mem.
3-169

read
datatype — a string that represents a MATLAB data type. The total memory
block size is derived from the value of count and the specified datatype.
datatype determines how many bytes to check for each memory value. read
supports the following data types:

To limit the time that read spends transferring data from the target processor,
the optional argument timeout tells the data transfer process to stop after
timeout seconds. timeout out is defined as the number of seconds allowed to
complete the read operation. You might find this useful for limiting prolonged
data transfer operations. If you omit the timeout option in the syntax, read
defaults to the global timeout defined in cc.

mem = read(cc,address,'datatype',count) reads data from memory on the
processor referred to by cc and defined by the address, and datatype input

[m,n] Read (m*n) values from memory into an m-by-n matrix in
column major order. Return the matrix in mem.

[m,n,p,...] Read (m*n*p*...) values from the processor memory in
column major order. Return the data in an m-by-n-by-p-by...
multidimensional matrix and return the matrix in mem.

datatype String Description

'double' Double-precision floating point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating point data

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

Input Response
3-170

read
arguments. The data block being read begins at the memory location defined
by address. count determines the number of values to be read. When you omit
the timeout option, timeout defaults to the value specified by the timeout
property in cc.

mem = read(cc,address,'datatype') reads the memory location defined by
the address input argument from the processor memory referred to by cc. The
data block being read begins at the memory location defined by address. When
you omit the count option, count defaults to 1. This syntax reads one memory
location of datatype.

Note read does not coerce data type alignment in your processor memory.
You can write and read data of any type (datatype) to and from any memory
location (address). Certain combinations of address and datatype are
difficult for some processors to use. To ensure seamless read operation, use
the address function to extract address values that are compatible with the
alignment required by your target processor.

Like the isreadable, iswritable, and write functions, read checks for valid
address values. Illegal address values are any address space larger than the
available space for the processor—232 for the C6xxx processor family and 216
for the C5xxx series. When read identifies an illegal address, it returns an
error message stating that the address values are out of range.

Reading Structures
Reading data from structures in memory represents a special subset of general
read. In each syntax, objname accesses a structure in memory on the target or
in CCS.

data = read(objname,structindex) reads the structure element referred to
by structindex.

data = read(objname,structindex,member) returns the value of the
specified member of the structure as identified by structindex.

data = read(objname,member) returns the value of member from the structure
accessed by objname, for all indexes—the entire structure variable.
3-171

read
data = read(objname,structindex,member,memberindex) returns the index
for member in the accessed structure.

Embedded Object Syntaxes
read works with all of the objects you create with createobj. To transfer data
from Code Composer Studio to MATLAB, use the read function—read—
depending on the data to access. Note that read and its variants are the only
way to get data from CCS to MATLAB as objects.

data = read(objname) reads all the data in memory at the location accessed
by object objname, and converts the data into a numeric representation.
Properties of objname, such as wordsize, storageunitspervalue, size,
represent, and binarypt—determine how read performs the numeric
conversion. data is a numeric array whose dimensions are defined by the size
property of objname. Object property size is the dimensions vector. Each
element in the dimensions vector contains the size of the data array in that
dimension. When size is a scalar, data is a column vector of the length
specified by size.

For example, when size is [2 3], data is a 2-by-3 array.

Properties of the Object
objname, the object that accesses the data, has the following properties, if the
object is a numeric object. The properties differ for different types of objects,
such as structure objects or register objects.

Property Options Description

size Greater than 1 Specifies the dimensions of the output
numeric array.

arrayorder col-major or
row-major

Defines how to map sequential memory
locations into arrays. 'col-major' is the
default, and the MATLAB standard.
C uses 'row-major' ordering most often.
3-172

read
data = read(objname,index) reads the specified element in the memory
location accessed by objname. index is a scalar or a vector that identifies the
particular data element to return. When you enter [] for index, read returns all
the data stored at the memory location. When you enter a scalar for index,
read returns a column vector of length size containing the data from the
memory space. When index is a vector, read returns the element in the array
specified by the entries in the vector. For example, if you are reading data from
a 3-by-3-by-3 array, setting index to be [2 2 2] returns the element
data(2,2,2). To return more than one element, use MATLAB standard range
notation for the vector elements in index. As an example, when index is [1:6],
read returns the first six elements of data. You must remember that the
number of elements in the vector in index must be either one (a scalar) or the
same as the number of dimensions in data and specified by the property size.
When data is a four dimensional array, your vector in index must have four
elements, one for each array dimension. Otherwise, read cannot determine
which elements to return.

data = read(objname,member,memberindex,structindex) reads the
members of the structure that objname accesses. When you omit all of the input

represent float, signed,
unsigned,
fract

Determines the numeric representation
used in the output data.

• float—IEEE floating point
representation, either 32- or 64 bits

• signed—two’s complement signed
integers

• unsigned—unsigned binary integer

• fract—fractional fixed-point data

wordsize Greater than 1 (Read-only) Calculated from other object
properties such as
storageunitspervalue

binarypt 0 to wordsize Determines the position of the binary
point in a word to specify its
interpretation

Property Options Description
3-173

read
arguments except objname, read returns the entire structure. member,
memberindex, and structindex (an optional input argument) specify which
structure member to read:

• member—specifies the name of the member of the structure to read.

• memberindex—provides the index of the data element to read.

• structindex—identifies the structure to read when objname accesses
a structure containing structures or a vector.

Note that the class of the object data from the read operation depends on the
class of the member being read—numeric values return numeric objects, string
values return string objects, and so on.

data = read(,timeout) During read operations, the timeout property of
objname determines the time allowed to complete the read. Including a value
for the timeout input argument in the read syntax lets you override the
timeout property setting for objname with the value you enter for argument
timeout. For reading large data arrays, being able to explicitly set the timeout
value as an input option may be necessary to let read run to completion. Note
that using the timeout input option does not change the timeout property
value for objname.

When you need to read one member of a structure or to do individual read
operations, consider using getmember.

Examples In its most straightforward form, read reads data that you wrote to the target
processor.

cc = ccsdsp;
indata = 1:25;
write(cc,0,indata,30);
outdata=read(cc,0,25,'double',10)

outdata =

 Columns 1 through 13

 1 2 3 4 5 6 7 8 9 10 11 12 13

 Columns 14 through 25
3-174

read
 14 15 16 17 18 19 20 21 22 23 24 25

outdata now contains the values in indata, returned from the target processor.

As a further demonstration of read, try the following functions after you create
a link cc and load an appropriate program to your target. To perform the first
example, 'var' must exist in the symbol table loaded in CCS.

• Read one 16-bit integer at the location of target symbol 'var'.
mlvar = read(cc,address(cc,'var'),'int16')

• Read 100 32-bit integers from address f000 (hexadecimal) and plot the data.
mlplt = read(cc,'f000','int32',100)
plot(double(mlplt))

• Increment the integer value stored at address 10 (decimal) of the target
processor.

cc = ccsdsp;
ainc = 10
mlinc = read(cc,ainc,'int32')
mlinc = int32(double(mlinc)+1)
cc.write(ainc,mlinc)

Reading String Variables
Using read to return a string creates a string object. Within the string object,
the property charconversion controls the read operation. When you set
charconversion to ASCII, read recognizes only the ASCII characters from 0 to
127. ASCII is the only accepted type for the charconversion property value.

While reading strings from memory, read continues until it encounters a null
character, then it stops.

For example, if memory contains the string “Hello World” in the following
format in memory (each block represents one memory location)

read does not return the M because it stops at the null character \0.

H e l l o W o r l d \0 M
3-175

read
To return a string from memory as a numeric object in MATLAB, use
readnumeric.

Reading Enumerated Variables
If you read an enumerated date type from memory, the returned entry is a
string object.

Reading Structures
The following examples show various structure read syntaxes at work. Start
with a structure definition.
struct tag {
 float re;
 float im;
} st[2] = {1,2,3,4};

Use read to return the information stored in the structure st.

st = createobj(cc,'st')

answer = read(st)
ans =
 [1x2 struct]

answer{1}

 re: 1
 im: 2
answer{2}

 re: 3
 im: 4
answer = read(st,2)

answer =
 re: 3
 im: 4
answer = read(st,2,'re')

answer =
 3
3-176

read
answer = read(st,'re')
answer =

1 3

See Also getmember, isreadable, symbol, write
3-177

readbin
3readbinPurpose Retrieve a block of data from DSP memory as binary strings

Syntax data = readbin(nn)
data = readbin(nn,[],timeout)
data = readbin(nn,index)
data = readbin(nn,)

Description data = readbin(nn) returns, as binary strings, the data accessed by numeric
object nn. When nn refers to an array, the returned values stored in data
compose a cell array of binary strings. If the size property of nn is 1, indicating
that nn accesses a scalar, the output in data is an array of binary characters.

data = readbin(nn,[],timeout) returns all the values accessed by nn, as
indicated by the empty square brackets, []. During read operations, the
timeout property of nn determines the time allowed to complete the read.
Including a value for the timeout input argument in the readbin syntax lets
you override the timeout property setting for nn with the value you enter for
argument timeout. For reading large data arrays, being able to explicitly set
the timeout value as an input option may be necessary to let readbin run to
completion. Note that using the timeout input option does not change the
timeout property value for nn.

data = readbin(nn,index) returns the data element at the index specified by
index from the data block accessed by nn Enter index as a scalar to return one
data value, or a vector to return two or more values from the data array.

data = readbin(nn,) returns binary strings as specified by your
combination of all the optional input arguments.

Examples

See Also cast, numeric, read, write, writebin
3-178

readhex
3readhexPurpose Retrieve a block of data from DSP memory as hexadecimal strings

Syntax data = readhex(nn)
data = readhex(nn,[],timeout)
data = readhex(nn,index)
data = readhex(nn,)

Description data = readhex(nn) returns, as hexadecimal strings, the data accessed by
numeric object nn. When nn refers to an array, the returned values stored in
data compose a cell array of hexadecimal strings. If the size property of nn is 1,
indicating that nn accesses a scalar, the output in data is an array of
hexadecimal characters.

data = readhex(nn,[],timeout) returns all the values accessed by nn, as
indicated by the empty square brackets, []. During read operations, the
timeout property of nn determines the time allowed to complete the read.
Including a value for the timeout input argument in the readhex syntax lets
you override the timeout property setting for nn with the value you enter for
argument timeout. For reading large data arrays, being able to explicitly set
the timeout value as an input option may be necessary to let readhex run to
completion. Note that using the timeout input option does not change the
timeout property value for nn.

data = readhex(nn,index) returns the data element at the index specified by
index from the data block accessed by nn Enter index as a scalar to return one
data value, or a vector to return two or more values from the data array.

data = readhex(nn,) returns hexadecimal strings as specified by your
combination of all the optional input arguments.

Examples

See Also cast, numeric, readbin, write, writehex
3-179

readmat
3readmatPurpose Read a matrix of values from an RTDX channel

Syntax data = readmat(rx,channelname,datatype,siz,timeout)
data = readmat(rx,channelname,datatype,siz)

Description data = readmat(rx,channelname,datatype,siz,timeout) reads a matrix of
data from an RTDX channel configured for read access. datatype defines the
type of data to read, and channelname specifies the queue to read. readmat
reads the desired data from the RTDX link specified by rx. Before you try to
read from a channel, open and enable the channel for read access. Replace
channelname with the string you specified when you opened the desired
channel. channelname must identify a channel that you defined in the program
loaded on the target processor. You cannot read data from a channel you have
not opened and configured for read access. If necessary, use the RTDX tools
provided in CCS IDE to determine which channels exist for the loaded
program.

data contains a matrix whose dimensions are given by the input argument
vector siz, where siz can be a vector of two or more elements. To operate
properly, the number of elements in the output matrix data must be an
integral number of channel messages.

When you omit the timeout input argument, readmat reads messages from the
specified channel until the output matrix is full or the global timeout period
specified in rx elapses.

Caution If the timeout period expires before the output data matrix is fully
populated, you lose all the messages read from the channel to that point.

MATLAB supports reading five data types with readmat:

datatype String Data Format

'double' Double-precision floating point values. 64 bits.

'int16' 16-bit signed integers
3-180

readmat
data = readmat(rx,channelname,datatype,siz) reads a matrix of data from
an RTDX channel configured for read access. datatype defines the type of data
to read, and channelname specifies the queue to read. readmat reads the
desired data from the RTDX link specified by rx. Before you try to read from
a channel, open and enable the channel for read access. Replace channelname
with the string you specified to open and enable the desired channel. You
cannot read data from a channel you have not opened and configured for read
access. data contains a matrix whose dimensions are given by the input
argument vector siz, where siz can be a vector of two or more elements. To
operate properly, the number of elements in the output matrix data must be an
integral number of channel messages.

When you include the timeout input argument, readmat reads messages from
the specified channel until the output matrix is full or the timeout period
elapses.

Caution If the timeout period expires before the output data matrix is fully
populated, you lose all the messages read from the channel to that point.

MATLAB supports reading five data types with readmat:

'int32' 32-bit signed integers

'single' Single-precision floating point values. 32 bits.

'uint8' Unsigned 8-bit integers

datatype String Data Format

'double' Double-precision floating point values, 64 bits.

'int16' 16-bit signed integers.

'int32' 32-bit signed integers.

datatype String Data Format
3-181

readmat
Examples In this data read and write example, you write data to the target through the
CCS IDE. You can then read the data back in two ways—either through read
or through readmsg. To duplicate this example you need to have a program
loaded on the target. The channels listed in this example, ichannel and
ochannel, must be defined in the loaded program. If the current program on
the target defines different channels, you can replace the listed channels with
your current ones.

cc = ccsdsp;
rx = cc.rtdx;
open(rx,'ichannel','w');
enable(rx,'ichannel');
open(rx,'ochannel','r');
enable(rx,'ochannel');
indata = 1:25; % Set up some data.
write(cc,0,indata,30);
outdata=read(cc,0,25,'double',10)

outdata =

 Columns 1 through 13

 1 2 3 4 5 6 7 8 9 10 11 12 13

 Columns 14 through 25

 14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the data into a 5-by-5 array called out_array.

out_array = readmat('ochannel','double',[5 5])

See Also readmsg, writemsg

'single' Single-precision floating point values. 32 bits.

'uint8' Unsigned 8-bit integers.

datatype String Data Format
3-182

readmsg
3readmsgPurpose Read messages from the specified RTDX channel

Syntax data = readmsg(rx,channelname,datatype,siz,nummsgs,timeout)
data = readmsg(rx,channelname,datatype,siz,nummsgs)
data = readmsg(rx,channelname,datatype,siz)
data = readmsg(rx,channelname,datatype,nummsgs)
data = readmsg(rx,channelname,datatype)

Description data = readmsg(rx,channelname,datatype,siz,nummsgs,timeout) reads
nummsgs from a channel associated with rx. channelname identifies the channel
queue, which must be configured for read access. Each message is the same
type, defined by datatype. nummsgs can be an integer that defines the number
of messages to read from the specified queue, or 'all' to read all the messages
present in the queue when you call the readmsg function. Each read message
becomes an output matrix in data, with dimensions specified by the elements
in vector siz. Thus, when siz is [m n], reading 10 messages (nummsgs equal 10)
creates 10 m-by-n matrices in data. Each output matrix in data must have the
same number of elements (m x n) as the number of elements in each message.
You must specify the type of messages you are reading by including the
datatype argument. datatype supports six strings that define the type of data
you are expecting.

When you include the timeout input argument in the function, readmsg reads
messages from the specified queue until it receives nummsgs, or until the period
defined by timeout expires while readmsg waits for more messages to be
available. When the desired number of messages is not available in the queue,
readmsg enters a ‘wait’ loop and stays there until more messages become

datatype String Specified Data Type

'double' Floating point data, 64-bits (double-precision).

'int16' Signed 16-bit integer data.

'int32' Signed 32-bit integers.

'single' Floating point data, 32-bits (single- precision).

'uint8' Unsigned 8-bit integers.
3-183

readmsg
available or timeout seconds elapse.The timeout argument overrides the
global timeout specified when you create rx.

data = readmsg(rx,channelname,datatype,siz,nummsgs) reads nummsgs
from a channel associated with rx. channelname identifies the channel queue,
which must be configured for read access. Each message is the same type,
defined by datatype. nummsgs can be an integer that defines the number of
messages to read from the specified queue, or 'all' to read all the messages
present in the queue when you call the readmsg function. Each read message
becomes an output matrix in data, with dimensions specified by the elements
in vector siz. Thus, when siz is [m n], reading 10 messages (nummsgs equal 10)
creates 10 n-by-m matrices in data. Each output matrix in data must have the
same number of elements (m x n) as the number of elements in each message.
You must specify the type of messages you are reading by including the
datatype argument. Datatype supports six strings that define the type of data
you are expecting.

data = readmsg(rx,channelname,datatype,siz) reads one data message
because nummsgs defaults to one when you omit the input argument. readmsgs
returns the message as a row vector in data.

data = readmsg(rx,channelname,datatype,nummsgs) reads the number of
messages defined by nummsgs. data becomes a cell array of row matrices,
data = {msg1,msg2,...,msg(nummsgs)}, because siz defaults to [1,nummsgs];
each returned message becomes one row matrix in the cell array. Each row
matrix contains one element for each data value in the current message —
msg# = [element(1), element(2),...,element(l)] where l is the number of data
elements in message. In this syntax, the read messages can have different
lengths, unlike the previous syntax options.

data = readmsg(rx,channelname,datatype) reads one data message,
returning a row vector in data. All of the optional input arguments, nummsgs,
siz, and timeout, use their default values.

In all calling syntaxes for readmsg, you can set siz and nummsgs to empty
matrixes, causing them to use their default settings — nummsgs = 1 and
siz = [1,l], where l is the number of data elements in the read message.
3-184

readmsg
Caution If the timeout period expires before the output data matrix is fully
populated, you lose all the messages read from the channel to that point.

Examples cc = ccsdsp;
rx = cc.rtdx;
open(rx,'ichannel','w');
enable(rx,'ichannel');
open(rx,'ochannel','r');
enable(rx,'ochannel');
indata = 1:25; % Set up some data.
write(cc,0,indata,30);
outdata=read(cc,0,25,'double',10)

outdata =

 Columns 1 through 13

 1 2 3 4 5 6 7 8 9 10 11 12 13

 Columns 14 through 25

 14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the messages into a 4-by-5 array called out_array.

number_msgs = msgcount(rx,'ochannel') % Check number of msgs
% in read queue.

out_array = cc.rtdx.readmsg('ochannel','double',[4 5])

See Also read, readmat, writemsg
3-185

readnumeric
3readnumericPurpose Read an object in memory and convert to the numeric equivalent in MATLAB

Syntax data = readnumeric(objname)
data = readnumeric(objname,index)
data = readnumeric(,timeout)

Description data = readnumeric(objname) returns all data from the memory area
specified by objname and converts it into a numeric representation. The
properties of objname control the numeric conversion process. Output data is
a numeric array that has dimensions defined by objname.size, which is the
dimensions array. Each element in the dimensions array specifies the size of
the objname array in that dimension. When size is a scalar, data is a column
vector of the specified length.

data = readnumeric(objname,index) returns a subset of the numeric values
from the numeric array specified by objname. Each row of index is applied as
a subscript into the full objname array. Output data composes a column vector
with one value per entry in the data. Array indices start at one and range up
to the maximum value defined by the value of the property size for objname.
When index is a vector, each row is a single index that defines one entry from
the defined numeric array. data is a column vector of values corresponding to
the specified indices. You can pass a new timeout value to modify temporarily
the default timeout property of objname.

data = readnumeric(,timeout) adds the optional input argument timeout
that lets you specify how long MATLAB waits for the readnumeric operation to
return a completion message. When MATLAB does not receive notification that
the operation finished within the allotted time, you get a time out error. You
may find that the operation did complete successfully in spite of the error
message.
3-186

readnumeric
objname Array Properties

Property Name Description

objname.size Dimensions of output numeric array. This
defines the size of the output.

objname.arrayorder Defines how sequential memory locations
are mapped into matrices in MATLAB.
The default is column major ordering,
which is the default arrangment in
MATLAB. Alternatively, you can use row
major ordering, which is the memory
organization used in C numeric
representations.

objname.represent Defines the numeric representation in
objname. Valid data types for represent
are:

• float—IEEE floating point
representation (32 or 64 bits)

• signed—two’s complement signed
integers

• unsigned—unsigned binary integers

• fract—fractional fixed-point
representation. For more information,
refer to objname.p

objname.wordsize Number of valid bits in the numeric
representation. wordsize is computed
from other properties such as
storageunitspervalue and therefore this
property is read-only.

objname.binarypt Other properties of objname control the
placement and arrangement of the
numeric values in memory.
3-187

readnumeric
Changes to the numeric representation are possible by modifying the class
properties. However, the CONVERT method implements the adjusting the
properties to implement some common data types.

See Also convert, getmember, read, write
3-188

regread
3regread

Purpose Return a value from a specified target processor register

Syntax reg = regread(cc,'regname','represent',timeout)
reg = regread(cc,'regname','represent')
reg = regread(cc,'regname')

Description reg = regread(cc,'regname','represent',timeout) reads the data value
in the regname register of the target processor and returns the value in reg as
a double-precision value. For convenience, regread converts each return value
to the MATLAB double datatype independent of the datatype defined by
represent. Making this conversion lets you manipulate the data in MATLAB.
String regname specifies the name of the source register on the target. Link cc
defines the target to read from. Valid entries for regname depend on your target
processor. Register names are not case-sensitive — a0 is the same as A0. For
example, the TMS320C6xxx processor family provides the following register
names that are valid entries for regname:

Other processors provide other register sets. Refer to the documentation for
your target processor to determine the registers for the processor.

Note Use read (called a direct memory read) to read memory-mapped
registers. For the TMS320C5xxx processor family, register PC is memory

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR, CSR Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register
pairs
3-189

regread
mapped and thus available using read, not regread. Use regread to read from
all other registers.

The represent input argument defines the format of the data stored in
regname. Input argument represent takes one of three input strings:

To limit the time that regread spends transferring data from the target
processor, the optional argument timeout tells the data transfer process to stop
after timeout seconds. timeout is defined as the number of seconds allowed to
complete the read operation. You might find this useful for limiting prolonged
data transfer operations. If you omit the timeout option in the syntax, regread
defaults to the global timeout defined in cc.

reg = regread(cc,'regname','represent') reads the data value in the
regname register of the target processor and returns the value in reg as a
double-precision value. String regname specifies the name of the source register
on the target. Link cc defines the target to read from. For convenience, regread
converts each return value to the MATLAB double datatype independent of
the datatype defined by represent. Making this conversion lets you manipulate
the data in MATLAB. The represent input argument defines the format of the
data stored in regname.

reg = regread(cc,'regname') reads the data value in the regname register of
the target processor and returns the value in reg. String regname specifies the
name of the source register on the target. Link cc defines the target to read

represent string Description

2scomp Source register contains a signed integer value in two’s
complement format. This is the default setting when
you omit the represent argument.

binary Source register contains an unsigned binary integer.

ieee Source register contains a floating point 32-bit or
64-bit value in IEEE floating-point format. Use this
only when you are reading from 32 and 64 bit registers
on the target.
3-190

regread
from. For convenience, regread converts each return value to the MATLAB
double datatype independent of the datatype of the source. Making this
conversion lets you manipulate the data in MATLAB.

Examples For the C5xxx processor family, most registers are memory-mapped and
consequently are available using read and write. However, the PC register is
not memory-mapped. The following command demonstrates how to read the
PC register. To identify the target, cc is a link for CCS IDE.

cc.regread('PC','binary')

To tell MATLAB what datatype you are reading, the string binary indicates
that the PC register contains a value stored as an unsigned binary integer.

In response, MATLAB displays

ans =

 33824

For processors in the C6xxx family, regread lets you access processor registers
directly. To read the value in general purpose register A0, type the following
function.

treg = cc.regread('A0','2scomp');

treg now contains the two’s complement representation of the value in A0.

Now read the value stored in register B2 as an unsigned binary integer, by
typing

cc.regread('B2','binary');

See Also read, regwrite, write
3-191

regwrite
3regwritePurpose Write data values to specified registers on a target processor

Syntax regwrite(cc,'regname',value,'represent',timeout)
regwrite(cc,'regname',value,'represent')
regwrite(cc,'regname',value,)

Description regwrite(cc,'regname',value,'represent',timeout) writes the data in
value to the regname register of the target processor. regwrite converts value
from its representation in the MATLAB workspace to the representation
specified by represent. The represent input argument defines the format of
the data when it is stored in regname. Input argument represent takes one of
three input strings:

String regname specifies the name of the destination register on the target.
Link cc defines the target to write value to. Valid entries for regname depend
on your target processor. Register names are not case-sensitive — a0 is the

represent string Description

2scomp Write value to the destination register as a signed
integer value in two’s complement format. This is the
default setting when you omit the represent
argument.

binary Write value to the destination register as an unsigned
binary integer.

ieee Write value to the destination registers as a floating
point 32-bit or 64-bit value in IEEE floating-point
format. Use this only when you are writing to 32- and
64-bit registers on the target.
3-192

regwrite
same as A0. For example, the TMS320C6xxx processor family provides the
following register names that are valid entries for regname:

Other processors provide other register sets. Refer to the documentation for
your target processor to determine the registers for the processor.

Note Use write (called a direct memory write) to write memory-mapped
registers. For the TMS320C5xxx processor family, register PC is memory
mapped and thus available using write, not regwrite. Use regwrite to write
to all other registers.

To limit the time that regwrite spends transferring data to the target
processor, the optional argument timeout tells the data transfer process to stop
after timeout seconds. timeout is defined as the number of seconds allowed to
complete the write operation. You might find this useful for limiting prolonged
data transfer operations. If you omit the timeout option in the syntax,
regwrite defaults to the global timeout defined in cc. If the write operation
exceeds the time specified, regwrite returns with a timeout error. Generally,
timeout errors do not stop the register write process. They stop while waiting
for CCS IDE to respond that the write operation is complete.

regwrite(cc,'regname',value,'represent') writes the data in value to
register regname of the target processor. regwrite converts value from its
representation in the MATLAB workspace to the representation specified by

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR, CSR Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register
pairs
3-193

regwrite
represent. The represent input argument defines the data format when it is
stored in regname. Input argument represent takes one of three input strings:

String regname specifies the name of the destination register on the target.
Link cc defines the target to write value to. Valid entries for regname depend
on your target processor. Register names are not case-sensitive — a0 is the
same as A0. For example, the TMS320C6xxx processor family provides the
following register names that are valid entries for regname:

Other processors provide other register sets. Refer to the documentation for
your target processor to determine the registers for the processor.

represent string Description

2scomp Write value to the destination register as a signed
integer value in two’s complement format. This is the
default setting when you omit the represent
argument.

binary Write value to the destination register as an unsigned
binary integer.

ieee Write value to the destination registers as a floating
point 32-bit or 64-bit value in IEEE floating-point
format. Use this only when you are writing to 32- and
64-bit registers on the target.

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR, CSR Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register
pairs
3-194

regwrite
Note Use write (called a direct memory write) to write memory-mapped
registers. For the TMS320C5xxx processor family, register PC is memory
mapped and thus available using write, not regwrite. Use regwrite to write
to all other registers.

regwrite(cc,'regname',value,) writes the data in value to the regname
register of the target processor. regwrite converts value from its
representation in the MATLAB workspace to the representation specified by
represent. The represent input argument defines the format of the data when
it is stored in regname. Input argument represent takes one of three input
strings:

String regname specifies the name of the destination register on the target.
Link cc defines the target to write value to. Valid entries for regname depend
on your target processor. Register names are not case-sensitive — a0 is the

represent string Description

2scomp Write value to the destination register as a signed
integer value in two’s complement format. This is the
default setting when you omit the represent
argument.

binary Write value to the destination register as an unsigned
binary integer.

ieee Write value to the destination registers as a floating
point 32-bit or 64-bit value in IEEE floating-point
format. Use this only when you are writing to 32- and
64-bit registers on the target.
3-195

regwrite
same as A0. For example, the TMS320C6xxx processor family provides the
following register names that are valid entries for regname:

Other processors provide other register sets. Refer to the documentation for
your target processor to determine the registers for the processor.

When you omit the represent argument, regwrite takes value from the
function and writes it to the designated register as a two’s complement value
signed integer.

Note Use write (called a direct memory write) to write to memory-mapped
registers. For the TMS320C5xxx processor family, register PC is memory
mapped and thus available using write, not regwrite. Use regwrite to write
to all other registers.

Examples To write a new value to the PC register on a C5xxx family processor, type

regwrite(cc,'pc',hex2dec('100'),'binary')

specifying that you are writing the value 256 (the decimal value of 0x100) to
register pc as binary data.

To write a 64-bit value to a register pair, such as B1:B0, the following syntax
specifies the value as a string, representation, and target registers.

regwrite(cc,'b1:b0',hex2dec('1010'),'ieee')

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR, CSR Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register
pairs
3-196

regwrite
Registers B1:B0 now contain the value 4112 in double-precision format.

See Also read, regread, write
3-197

reload
3reloadPurpose Reload to the target signal processor the most recently loaded program file

Syntax s = reload(cc,timeout)
s = reload(cc)

Description s = reload(cc,timeout) resends the most recently loaded program file to the
target processor. If you have not loaded a program file in the current session
(so there is no previously loaded file), reload returns the null entry [] in
s indicating that it could not load a file to the target. Otherwise, s contains the
full pathname to the program file. After you reset your target processor or after
any event produces changes in your target processor memory, use reload to
restore the program file to the target for execution.

To limit the time CCS IDE spends trying to reload the program file to the
target, timeout specifies how long the load process can take. If the load process
exceeds the timeout limit, CCS IDE stops trying to load the program file and
returns an error stating that the time period expired. Exceeding the allotted
time for the reload operation usually indicates that the reload was successful
but CCS IDE did not receive confirmation before the timeout period passed.

s = reload(cc) reloads the most recent program file, using the timeout value
set when you created link cc, the global timeout setting.

Using reload with multiprocessor boards
When your target board contains more than one processor, reload calls the
reloading function for each processor represented by cc, reloading the most
recently loaded program on each processor.

This is the same as calling reload for each processor individually through
ccsdsp objects for each one.

Examples After you create a link, use the link to reload your most recently loaded project.
If you have not loaded a project in this session, reload returns an error and an
empty value for s. Loading a project eliminates the error.

cc=ccsdsp;
s=reload(cc,23)
Warning: No action taken - First load a valid Program file before
you reload
3-198

reload
> In E:\nightly\toolbox\tiddk\tiddk\@ccs\@ccsdsp\reload.m at line
23

s =

 ''

open(cc,'D:\ti\tutorial\sim62xx\gelsolid\hellodsp.pjt',...
'project')

build(cc)

load(cc,'hellodsp.pjt')
halt(cc)
s=reload(cc,23)

s =

D:\ti\tutorial\sim62xx\gelsolid\Debug\hellodsp.out

See Also cd, load, open
3-199

remove
3removePurpose Remove a file from the active CCS IDE project

Syntax remove(cc,'filename')
remove(cc,'gelfilename')

Description remove(cc,'filename') deletes the file specified by filename from the active
project in CCS IDE. You can remove files that exist in the active project only.
filename must match the name of an existing file exactly to remove the file.

remove(cc,'gelfilename') deletes the file specified by gelfilename from the
active project in CCS IDE. You can remove files that exist in the active project
only. gelfilename must match the name of an existing file exactly to remove
the file.

Examples After you have a project in CCS IDE, you can delete files from it using remove
from the MATLAB command line. For example, build a project and load the
resulting .out file. With the project build complete, load your .out file by typing

load(cc,'filename.out')

Now remove one file from your project, such as the GEL file.

remove(cc,'gelfilename')

You see in CCS IDE that the GEL file no longers appears in the GEL files
folder in CCS.

See Also activate, add, cd, open
3-200

reset
3resetPurpose Initiate a reset of the target processor

Syntax reset(cc,timeout)
reset(cc)

Description reset(cc,timeout) stops program execution on the target processor and
asynchronously performs a processor reset, returning all processor register
contents to their power up settings. The reset function returns after the
processor halts. To allow you to determine how long reset waits for the
processor to halt, input option timeout lets you set the waiting period in
seconds. After you use reset, the routine returns after the processor halts or
after timeout seconds elapses, whichever comes first.

reset(cc) stops program execution on the target processor and
asynchronously performs a processor reset, returning all processor register
contents to their power up settings. The reset function returns after the
processor halts. reset uses the global timeout setting defined in cc to
determine how long to wait for the processor to halt before returning. Use get
to examine the global timeout value for the link.

Use run to restart the program loaded on the target.

Compare to halt which does not reset the processor after the program stops
running.

Using reset with multiprocessor boards
When your target board contains more than one processor, reset calls the
processor resetting function for each processor represented by cc, resetting
each processor.

This is the same as calling reset for each processor individually through
ccsdsp objects for each one.

Note that the run and halt methods still apply as mentioned earlier in this
section.

See Also halt, restart, run
3-201

reshape
3reshapePurpose Change the shape of an array maintaining the same number of elements

Syntax reshape(x,[m,n])
reshape(x,[m,n,p])
reshape(x,[m n p])
reshape(x,[,[],])

Description reshape(x,[m,n]) returns the m-by-n array whose elements are taken
columnwise from x. If x does not have m*n elements, reshape returns an error
from the operation.

Generally, reshape(x,siz) returns an n-dimensional array with the same
elements as x, but reshaped to size(siz). Note that prod(siz) must be the
same as prod(size(x)).

reshape(x,[m,n,p]) returns an n-dimensional array with the same number
of elements as x, but reshaped to have size m-by-n-by-p-by-…. For the reshape
operation to work, m*n*p*… must equal prod(size(x)).

reshape(x,[m n p]) is the same as the preceding syntax.

reshape(x,[,[],]) calculates the length of the dimension replaced by [] in
the command, so that the product of the dimensions equals prod(size(x)).For
the length calculation to succeed, prod(size(x)) bust be evenly divisible by
the product of the known dimensions (all the dimensions exclusive of the
unknown dimension). Within the function call, you are allowed to use only one
set of square brackets, [], for one unknown dimension.
3-202

restart
3restartPurpose Restore the program counter to the entry point for the current program

Syntax restart(cc,timeout)
restart(cc)

Description restart(cc,timeout) halts the processor immediately and resets the program
counter (PC) to the program entry point for the loaded program. Use run to
execute the program after you use restart. restart does not execute the
program after resetting the PC. timeout allows you to specify how long
restart waits for the processor to stop and return the PC to the program entry
point. Specify timeout in seconds. After you use restart, the restart routine
returns after resetting the PC or after timeout seconds elapse, whichever
comes first. If the timeout period expires, restart returns a timeout error.

restart(cc) halts the processor immediately and resets the program counter
(PC) to the program entry point for the loaded program. Use run to execute the
program after you use restart. restart does not execute the program after
resetting the PC. When you omit the timeout argument, restart uses the
global default timeout period defined in cc to determine how long to wait for
the processor to stop and the PC to be reset to the program entry point.

Using restart with multiprocessor boards
When your target board contains more than one processor, restart calls the
processor restarting function for each processor represented by cc, restarting
the program loaded on each processor.

This is the same as calling restart for each processor individually through
ccsdsp objects for each one.

Examples When you are developing algorithms for your target processor, restart
becomes a particularly useful function. Rather than resetting the target after
each algorithm test, use the restart function to return the program counter to
the program entry point. Since restart restores your local variables to their
initial settings, but does not reset the processor, you are ready to rerun your
algorithm with new values. Also, in the case where your process gets lost or
halts, restart is a quick way to restore your program.

See Also halt, isrunning, run
3-203

resume
3resumePurpose Resume execution of a stopped or paused function

Syntax resume(ff)

Description resume(ff) restarts the function ff from where you stopped it or paused it.
The function runs until completion or until it encounters a breakpoint.

See Also restart, run
3-204

run
3runPurpose Execute the program loaded on the target processor

Syntax run(cc,state,timeout)
run(cc,'main')
run(cc,'tofunc','functionname')
run(ff)
run(ff,input1,value1,input2,value2, ,inputn,valuen)
output = run(ff)

Description run(cc,state,timeout) starts to execute the program loaded on the target
processor referred to by cc. Program execution starts from the location of the
program counter. After starting program execution, the input argument state
determines when you regain program control.

To define the action of run, state accepts five strings that set the state of the
processor:

State String Run Action

'main' Reset the program counter then run the program
until the PC reaches main. Stop at main.

'run' Start to execute the program. Wait until the program
is running, then return. The program continues to
run. If you omit the option argument, run defaults to
this setting. Sets the processor to the running state
and returns. This is useful when you want to continue
to work in MATLAB while the processor executes a
program.

'runtohalt' Start to execute the program. Wait to return until the
program encounters a breakpoint or the program
execution terminates. Sets the processor to the
running state and returns when the processor halts.
3-205

run
To allow you to specify how long run waits for the processor to start executing
the loaded program before returning, the input argument timeout lets you set
the waiting period in seconds. After you use run, the routine returns after
confirming that the program started to execute, or after timeout seconds
elapses, whichever comes first. If the time-out period expires, run returns a
time-out error.

run(cc,'main') resets the program counter in your project then runs the
program linked to cc until the counter reaches the start of main.

run(cc,'tofunc','functionname') runs the program from the current
position of the program counter until the counter reaches the function
functionname. Compare this to run(cc,'main') which resets the program
counter before executing the program. Using the tofunc option does not reset
the program counter.

run(ff) runs the function ff and puts the return value in the appropriate
location. run performs a goto followed by execute to run ff.

run(ff,input1,value1,input2,value2, ,inputn,valuen) writes the input
values for ff before running the function, where valuen is the value for the
input argument inputn. You can pass up to 10 input arguments and their
values when you call run.

output = run(ff) puts the return value from running ff in output.

'tofunc' Run the program from the current position of the
program counter to the start of a specified function
functionname.

'tohalt' Changes the state of a running process to 'runtohalt',
and waits for the processor to halt before returning.
Use this when you want to stop a running process
cleanly. If the processor is already stopped when you
use this state setting, run returns immediately.

State String Run Action
3-206

run
Using run with multiprocessor boards
When your target board contains more than one processor, run calls the
program running function for each processor represented by cc, running the
program loaded on each processor.

This is the same as calling run for each processor individually through ccsdsp
objects for each one. The other information about run on a single processor
applies to each processor in the multiple processor target cases.

Examples After you build and load a program to your target, use run to start execution.

cc = ccsdsp('boardnum',0,'procnum',0); % Create a link to CCS
% IDE.

cc.load('tutorial_6xevm.out'); % Load an executable file to the
% target.

cc.rtdx.configure(1024,4); % Configure four buffers for data
% transfer needs.

cc.rtdx.open('ichan','w'); % Open RTDX channels for read and
% write.

cc.rtdx.enable('ichan');
cc.rtdx.open('ochan','r');
cc.rtdx.enable('ochan');

cc.restart; % Return the PC to the beginning of the current
% program.

cc.run('run'); % Run the program to completion.

This example uses a tutorial program included with MATLAB Link for Code
Composer Studio. Set your CCS IDE working directory to be the one that holds
your project files. The load function uses the current working directory unless
you provide a full pathname in the input arguments.

Rather than using the dot notation to access the RTDX functions, you can
create an alias to the cc link and use the alias in later commands. Thus, if you
add the line

rx = cc.rtdx;

to the program, you can replace
3-207

run
cc.rtdx.configure(1024,4);

with

configure(rx,1024,4);

See Also halt, isrunning, restart
3-208

save
3savePurpose Save files and projects in CCS IDE

Syntax save(cc,'filename','type')
save(cc,'filename')

Description save(cc,'filename','type') save the file in CCS IDE identified by filename
of type 'type'. type identifies the type of file to save, either project files when
you use 'project' for type, or text files when you use 'text' for the type
option. To save a specific file in CCS IDE, filename must match the name of
the file to save exactly. If you replace filename with 'all', save writes every
open file whose type matches the type option. File types recognized by save
include these extensions.

When you replace filename with the null entry [], save writes to storage the
current active file window in CCS IDE, or the active project when you specify
'project' for the type option.

Examples To clarify the different save options, here are six commands that save open
files or projects in CCS IDE.

type String Affected files

'project' Project files with the .pjt extension.

'text' All files with these extensions —.a*, .c, .cc, .ccx, .cdb,
.cmd, .cpp, .lib, .o*, .rcp, and .s*. Note that 'text'
does not save .cfg files.

Command Result

save(cc,'all','project') Save all open projects in CCS IDE.

save(cc,'my.pjt','project') Save the project my.pjt.

save(cc,[],project') Save the active project.

save(cc,'all','text') Save all open text files. This
includes source file, libraries,
command files, and others.
3-209

save
See Also add, cd, close, open

save(cc,'my_source.cpp','text') Save the text file my_source.cpp.

save(cc,[],'text') Save the active file window.

Command Result
3-210

set
3setPurpose Set the properties of links for CCS IDE and RTDX interface

Syntax set(cc,'propertyname','propertyvalue')
set(cc,'propname1','propvalue1','propname2','propvalue2')
v = set(cc)
cc.propertyname = 'propertyvalue'
set(rx,'propertyname','propertyvalue')
set(rx,'propname1','propvalue1','propname2','propvalue2')
v = set(rx)
rx.propertyname = 'propertyvalue'

Description set(cc,'propertyname','propertyvalue') sets the specified property of cc
to the specified value.

set(cc,'propname1','propvalue1','propname2','propvalue2') sets
multiple properties (propname1, propname2) of cc to corresponding property
values (propvalue1, propvalue2) with a single statement. cc must be a link.

v = set(cc) returns the properties and range of acceptable values of link cc.
When the range of values for a property is not finite, set returns {} for the
property value. When you omit the output argument, MATLAB displays the
results on the screen.

cc.propertyname = propertyvalue uses the dot notation to set propertyname
to propertyvalue.

set(rx,'propertyname','propertyvalue') sets the specified property of rx
to the specified value.

set(rx,'propname1','propvalue1','propname2','propvalue2') sets
multiple properties (propname1, propname2) of rx to corresponding property
values (propvalue1, propvalue2) with a single statement.

v = set(rx) returns the properties and range of values of link rx. rx is the
RTDX portion of a link for CCS IDE. When the range of values for a property
is not finite, set returns {} for the property value. When you omit the output
argument, MATLAB displays the results on the screen.

rx.propertyname = propertyvalue uses the dot notation to set propertyname
to propertyvalue for link rx.
3-211

set
Examples Create a link to CCS IDE

cc = ccsdsp;

Now review the properties of cc to see the acceptable values for each property.

v=set(cc)

v =

 timeout: {}
 page: {}
 eventwaitms: {}

The properties accept any input value, as shown by the {} entries returned.

Set timeout to 10 s and page to 2. Property eventwaitms cannot be set. It is
read-only.

set(cc,'timeout',10,'page',2)
get(cc)

ans =

 app: [1x1 activex]
 dspboards: [1x1 activex]
 dspboard: [1x1 activex]
 dsptasks: [1x1 activex]
 dsptask: [1x1 activex]
 dspuser: [1x1 activex]
 rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: 'D:\ticcs\cc\bin\cc_app.exe'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 2

Reset page to 0 since this is a C6xxx processor.

cc.page = 0
get(cc)
3-212

set
ans =

 app: [1x1 activex]
 dspboards: [1x1 activex]
 dspboard: [1x1 activex]
 dsptasks: [1x1 activex]
 dsptask: [1x1 activex]
 dspuser: [1x1 activex]
 rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: 'D:\ticcs\cc\bin\cc_app.exe'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

See Also get
3-213

symbol
3symbolPurpose Return the most recent program symbol table from CCS IDE

Syntax s = symbol(cc)

Description s = symbol(cc) returns the symbol table for the program loaded in CCS IDE.
symbol only applies after you load a target program file. s is an array of
structures where each row in s presents the symbol name and address in the
table. Therefore, s has two columns; one is the symbol name, the other is the
symbol address and symbol page. For example, this table shows a few possible
elements of s, and their interpretation.

You can use field address in s as the address input argument to read and
write.

It you use symbol and the symbol table does not exist, s returns empty and you
get a warning message.

Symbol tables are a portion of a COFF object file that contains information
about the symbols that are defined and used by the file. When you load a
program to the target, the symbol table resides in CCS IDE. While CCS IDE
may contain more than one symbol table at a time, symbol accesses the symbol
table belonging to the program you last loaded on the target.

Examples Demonstrating this function requires that you load a program file to your
target. In this example, build and load theMATLAB Link for Code Composer
Studio demo program c6701evmafxr. Start by entering c6701evmafxr at the
MATLAB prompt.

c6701evmafxr;

s Structure Field Contents of the Specified Field

s(1).name String reflecting the symbol entry name.

s(1).address(1) Address or value of symbol entry.

s(1).address(2) Memory page for the symbol entry. For TI C6xxx
processors, the page is 0.
3-214

symbol
Now set the simulation parameters for the model and build the model to your
target. With the model loaded on your target, use symbol to return the entries
stored in the symbol table in CCS IDE.

cc = ccsdsp;
s = symbol(cc);

s contains all the symbols and their addresses, in a structure you can display
with the following code:

for k=1:length(s),disp(k),disp(s(k)),end;

MATLAB lists the symbols from the symbol table in a column.

See Also load, run
3-215

visible
3visiblePurpose Set whether CCS IDE window is visible while CCS is running

Syntax visible(cc,state)

Description visible(cc,state) sets CCS IDE to be visible or not visible on the desktop.
Input argument state accepts either 0 or 1 to set the visibility. Setting state
equal to 0 makes CCS IDE not visible on the desktop. However, the CCS IDE
process runs in the background while the window is not visible. Running CCS
IDE without making it visible lets you use the CCS IDE functions from
MATLAB, without interacting with CCS IDE. If you need to interact with CCS
IDE, set state equal to 1. This makes CCS IDE visible and you can use the
features of the user window.

An important feature of visible is that it creates a new link to CCS IDE when
you change the IDE visibility. As a result, after you use

visible(cc,state)

to make CCS IDE show on your desktop, the MATLAB clear all function does
not remove the visibility handle. You must remove the handle explicitly before
you use clear.

To see the visibility difference, open Code Composer Studio and use Windows
Task Manager to look at the applications and processes running on your
computer. When CCS IDE is visible (the normal startup and operating mode
for the IDE), CCS IDE appears listed on the Applications page of Task
Manager. And the process cc_app.exe shows up on the Processes page as a
running process. When you set CCS IDE to not visible (state equal 0), CCS
IDE disappears from the Applications page, but remains on the Processes
page, with a Process ID (PID), using CPU and memory resources.

Note When you close MATLAB while CCS IDE is not visible, MATLAB closes
CCS if it launched the IDE. This happens because the operating system treats
CCS as a subprocess in MATLAB when CCS is not visible. By having
MATLAB close the invisible IDE when you close MATLAB, you do not need to
worry about CCS being left open with no way to close it without using
Windows Task Manager. If CCS IDE is not visible when you open MATLAB,
closing MATLAB leaves CCS IDE running in as invisible state. More directly,
3-216

visible
MATLAB leaves CCS IDE in the visibility and operating state in which it
finds it.

Examples Test to see whether CCS IDE is running. Then change the visibility and check
again. Start by launching CCS IDE. Then open MATLAB and at the prompt,
type

cc=ccsdsp

CCSDSP Object:
 API version = 1.0
 Processor type = C67
 Processor name = CPU
 Running? = No
 Board number = 0
 Processor number= 0
 Default timeout = 10.00 secs

RTDX Object:
 Timeout: 10.00 secs
 Number of open channels: 0

MATLAB creates a link to CCS IDE and leaves CCS IDE visible on your
desktop.

isvisible(cc)

ans =
1

Now, change the visibility state to 0, or invisible, and check the state.

visible(cc,0)
isvisible(cc)

ans =
0

Notice that CCS IDE is not visible on your desktop. Recall that MATLAB did
not open CCS IDE. When you close MATLAB with CCS IDE in this invisible
3-217

visible
state, CCS IDE remains running in the background. The only ways to close it
are either

• Launch MATLAB. Create a new link to CCS IDE. Use the new link to make
CCS IDE visible. Close CCS IDE.

• Open Windows Task Manager. Click Processes. Find and highlight
cc_app.exe. Click End Task.

See Also isvisible, load
3-218

write
3writePurpose Write data to memory on the target processor

Syntax write(cc,address,data,timeout)
write(cc,address,data)

write(objname)
write(objname,index)
write(objname,structindex,member1,value1, ,membern,valuen,memindex)
write(,timeout)

Description Link Object Syntaxes

write(cc,address,data,timeout) sends a block of data to memory on the
processor referred to by cc. The address and data input arguments define the
memory block to be written—where the memory starts and what data is being
written. The memory block to be written to begins at the memory location
defined by address. data is the data to be written, and can be a scalar, a vector,
a matrix, or a multidimensional array. Data get written to memory in
column-major order. timeout is an optional input argument you use to
terminate long write processes and data transfers. For details about each input
parameter, read the following descriptions.

address — write uses address to define the beginning of the memory block to
write to. You provide values for address as either decimal or hexadecimal
representations of a memory location in the target processor. The full address
at a memory location consists of two parts: the offset and the memory page,
entered as a vector [location, page], a string, or a decimal value. In cases
where the processor has only one memory page, as is true for many digital
signal processors, the page portion of the memory address is 0. By default,
ccsdsp sets the page to 0 at creation if you omit the page property as an input
argument to set the page parameter.
3-219

write
For processors that have one memory page, setting the page value to 0 lets you
specify all memory locations in the processor using just the memory location
without the page value.

To specify the address in hexadecimal format, enter the address property value
as a string. write interprets the string as the hexadecimal representation of
the desired memory location. To convert the hex value to a decimal value, the
function uses hex2dec. Note that when you use the string option to enter the
address as a hex value, you cannot specify the memory page. For string input,
the memory page defaults to the page specified by cc(page).

data — the scalar, vector, or array of values that are written to memory on
the processor. write supports the following data types:

Table 3-6: Examples of Address Property Values

Property
Value

Address Type Interpretation

'1F' String Offset is 31 decimal on the page
referred to by cc(page)

10 Decimal Offset is 10 decimal on the page
referred to by cc(page)

[18,1] Vector Offset is 18 decimal on memory page 1
(cc(page) = 1)

datatype String Description

'double' Double-precision floating point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating point data

'uint8' Unsigned 8-bit integers
3-220

write
To limit the time that write spends transferring data from the target
processor, the optional argument timeout tells the data transfer process to stop
after timeout seconds. timeout out is defined as the number of seconds allowed
to complete the write operation. You may find this useful for limiting prolonged
data transfer operations. If you omit the timeout option in the syntax, write
defaults to the global timeout defined in cc.

write(cc,address,data) ends a block of data to memory on the processor
referred to by cc. The address and data input arguments define the memory
block to be written—where the memory starts and what data is being written.
The memory block to be written to begins at the memory location defined by
address. data is the data to be written, and can be a scalar, a vector, a matrix,
or a multidimensional array. Data get written to memory in column-major
order. Refer to the preceding syntax for details about the input arguments. In
this syntax, timeout defaults to the global timeout period defined in
cc.timeout. Use get to determine the default timeout value.

Like the isreadable, iswritable, and read functions, write checks for valid
address values. Illegal address values would be any address space larger than
the available space for the processor—232 for the C6xxx processor family and
216 for the C5xxx series. When the function identifies an illegal address, it
returns an error message stating that the address values are out of range.

Embedded Object Syntaxes
write works with all of the objects you create with createobj. To transfer data
from MATLAB to Code Composer Studio, use one of the write functions—
write—depending on the data to write. Note that write and its variants are
the only way to get data from MATLAB to CCS from objects.

write(objname) writes all the data in objname to the location accessed by
object objname. Properties of objname, such as wordsize,
storageunitspervalue, size, represent, and binarypt—determine how
write performs the numeric conversion. data is a numeric array whose

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

datatype String (Continued) Description
3-221

write
dimensions are defined by the size property of objname. Object property size
is the dimensions vector. Each element in the dimensions vector contains the
size of the data array in that dimension. When size is a scalar, data is a
column vector of the length specified by size.

For example, when size is [2 3], data is a 2-by-3 array.

Properties of the Object
objname, the object that accesses the data, has the following properties, if the
object is a numeric object. The properties differ for different types of objects,
such as structure objects or register objects.

Property Options Description

size Greater than 1 Specifies the dimensions of the output
numeric array.

arrayorder col-major or
row-major

Defines how to map sequential memory
locations into arrays. 'col-major' is the
default, and the MATLAB standard.
C uses 'row-major' ordering most often.

represent float, signed,
unsigned,
fract

Determines the numeric representation
used in the output data.

• float—IEEE floating point
representation, either 32- or 64 bits

• signed—two’s complement signed
integers

• unsigned—unsigned binary integer

• fract—fractional fixed-point data

wordsize Greater than 1 (Read-only) Calculated from other object
properties such as
storageunitspervalue

binarypt 0 to wordsize Determines the position of the binary
point in a word to specify its
interpretation
3-222

write
write(objname,index) reads the specified element in the memory location
accessed by objname. index is a scalar or a vector that identifies the particular
data element to return. When you enter [] for index, write returns all the data
stored at the memory location. When you enter a scalar for index, write
returns a column vector of length size containing the data from the memory
space. When index is a vector, write returns the element in the array specified
by the entries in the vector. For example, if you are reading data from
a 3-by-3-by-3 array, setting index to be [2 2 2] returns the element
data(2,2,2). To return more than one element, use MATLAB standard range
notation for the vector elements in index. As an example, when index is [1:6],
write returns the first six elements of data. You must remember that the
number of elements in the vector in index must be either one (a scalar) or the
same as the number of dimensions in data and specified by the property size.
When data is a four dimensional array, your vector in index must have four
elements, one for each array dimension. Otherwise, write cannot determine
which elements to return.

write(objname,structindex,member1,value1, ,membern,valuen,memindex) reads
the members of the structure that objname accesses. When you omit all of the
input arguments except objname, write returns the entire structure. membern,
valuen, memindex, and stindex (an optional input argument) specify which
structure member to read:

• membern—specifies the name of the member of the structure to write

• valuen—specifies the value to write to membern

• memberindex—provides the index of the data element to write

• structindex—identifies the structure to write when objname accesses
a structure containing structures or a vector

Note that the class of the object data from the write operation depends on the
class of the member being read—numeric values return numeric objects, string
values return string objects, and so on.

write(,timeout) During write operations, the timeout property of objname
determines the time allowed to complete the write. Including a value for the
timeout input argument in the write syntax lets you override the timeout
property setting for objname with the value you enter for argument timeout.
For reading large data arrays, being able to explicitly set the timeout value as
an input option may be necessary to let write run to completion. Note that
3-223

write
using the timeout input option does not change the timeout property value for
objname.

When you need to write one member of a structure or to do individual write
operations, consider using getmember.

Notes About Using write With Embedded Objects
When you are writing data into memory on your target, consider a number of
points that affect how write performs the write operation.

• The data you write to the target can be either numeric or hexadecimal
format.

• When the data you are writing contains values that exceed the representable
range for the variable date type and word size, the value written saturates
to the maximum or minimum representable value for the variable
representation. For example, if you try to write the value 70000 into an
unsigned, 16-bit variable, the write operation stores 65535 into memory.
65535 is the maximum representable value for unsigned, 16-bit integers.
Similarly, if you try to write -3 to the same variable, the stored value will be
0. You cannot represent negative numbers in the unsigned format.

• When you write more data elements to memory than fit in the specified size
of the memory block, only the number of elements that fit in the memory
block get written to the target. Excess elements do not get stored and are
lost.

• When you write fewer data elements to memory than fit in the specified size
of the memory block, all the elements get written to the memory block on the
target. Memory space in the block which does not receive new elements is not
affected by the write operation and remains unchanged.

• Use separate write operations to write multiple data elements to different
locations within the memory block accessed by an object. For example, to
write to the fifth and eighth elements of a 1-by-10 array in memory accessed
by an object, use write twice—once to write to the fifth memory location and
the again to write to the eighth location. You cannot combine the write
operations in a single command unless the memory locations are contiguous.
Refer to the next item in this list for information about writing to contiguous
memory locations within a memory block.
3-224

write
• To write a block of data into contiguous locations in the memory block
accessed by the object, supply just the starting index for the locations in the
memory block.

Notes About Writing Strings to Memory
Writing strings to memory has some idiosyncrasies. Recall the following points
when you use write with string data.

• Data that you write to memory can be numeric or string data

• When your data is strings or characters, the write operation is controlled by
the charconversion property value for the object. write accepts and writes
only characters with ASCII values from 0 to 127 when the charconversion
property value is ASCII.

• Numeric data is not restricted in any way when you use write.

• write appends a null character as the last element written to memory,
except when

- you write numeric data

- the object points to a single C character (size equals 1)

- the amount of data you are writing exceeds the allocated space

• When the string data you write does not fill the allotted space in memory,
write does not fill the extra space with zeros—no zero padding.

Notes About Writing to Structures

When you are writing data to a particular index within the structure, consider
using getmember to create an object that accesses the desired member. Then
use your new object as objname in the write function call.

Refer to the section “Embedded Object Examples” for samples of write in use.

Examples Link Object Examples
Create a link to a target processor and write data to the target. In this example,
CCS IDE recognizes one board having one processor.

cc = ccsdsp;
cc.visible(1);
write(cc,'50',1:250);
mem = read(cc,0,50,'double') % Returns 50 values as a column

% vector in mem.
3-225

write
It may be more convenient to return the data in an array. If you enter a vector
for count, mem contains a matrix of dimensions the same as vector count.

write(cc,10,1:100);
mem=read(cc,10,[10 10],'double')

mem =

 1 11 21 31 41 51 61 71 81 91
 2 12 22 32 42 52 62 72 82 92
 3 13 23 33 43 53 63 73 83 93
 4 14 24 34 44 54 64 74 84 94
 5 15 25 35 45 55 65 75 85 95
 6 16 26 36 46 56 66 76 86 96
 7 17 27 37 47 57 67 77 87 97
 8 18 28 38 48 58 68 78 88 98
 9 19 29 39 49 59 69 79 89 99
 10 20 30 40 50 60 70 80 90 100

Embedded Object Examples
The following examples show you some of the details about using write with
embedded objects. Also, you can find an example or two for each of the items in
the list from the section “Notes About Using write With Embedded Objects”.

When you try to write more elements to the memory space than the space can
hold, write ignores the extra elements, storing only the ones that fit. In this
example, mm is an object that access a 1-by-10 variable in memory.

• Writing 15 elements to the 1-by-10 array
write(mm,[1:15])

results in elements 1 through 10 (or [1:10]) being written to memory.
Elements 11 through 15 are ignored.

• Writing 5 element to the 1-by-10 array
write(mm,[1:5])

results in elements [1:5] being written to memory without changing the
values in memory for element [6:10].
3-226

write
To write multiple element to different indices in the 1-by-10 array, use multiple
write calls.

write(mm,5,6)

writes value 6 to the fifth index in the array. Now to write another value to a
different index, use

write(mm,7,9)

which writes value 9 to the seventh element of the array. Trying to use one call
like

write(mm,[5 7],[6 9])

to write 6 into index 5 and 9 into index 7 does not work.

Examples That Write Strings
Embedded object mm accesses a 1-by-12 array in memory on the target.

To write a string to target memory, use

write(mm,'Hello World')

which writes 11 characters to memory plus the additional null character at the
end of the string.

Notice that the M at the end of the memory space is not affected by the write
operation. Now write a new string to memory, such as “Ciao.”

write(mm,'Ciao')

After writing to memory, the stored string looks like:

where the fifth element now holds the null character that resulted from writing
'Ciao' to indices 1 through 4, plus the null character in index 5. All the
characters after index 5 remain the same. Recall that if you now read the

H e l l o W o r l d \0 M

C i a o \0 W o r l d \0 M
3-227

write
memory, the read operation stops at the first null character and does not return
“World” or “M.”

See Also read, symbol
3-228

writebin
3writebinPurpose Writes binary data to DSP memory

Syntax writebin(mm,data)
writebin(mm,data,[])
writebin(mm,data,index)
writebin(,timeout)

Description writebin(mm,data) writes a block of binary strings data into the memory
block described by mm. data is string containing 0 or 1 or a cell array of binary
strings of 0s and 1s. Writing to the target fails when data has more entries
than the memory range covers as specifed by mm. Conversely, when data has
fewer elements than the memory range allows, writebin starts writing data at
the first address in the memory location.

writebin(mm,data,[]) same as writebin(mm,data).

writebin(mm,data,index) Writes a single binary string data to the specifed
index (the address offset).

writebin(,timeout) adds the optional timeout input argument to specify
the time allowed for the write operation to finish. Changing the default time
out value may be necessary when you write large arrays to memory. Note that
when MATLAB returns an error that the time-out period expired, it does not
necessarily mean the write failed. Only that MATLAB did not receive
notification about the write operation finishing before the allotted time passed.
The write operation usually works correctly in spite of the message.

See Also read, write
3-229

writemsg
3writemsgPurpose Write messages to the specified RTDX channel

Syntax data = writemsg(rx,channelname,data,timeout)
data = writemsg(rx,channelname,data)

Description data = writemsg(rx,channelname,data) writes data to a channel associated
with rx. channelname identifies the channel queue, which must be configured
for write access. All messages must be the same type for a single write
operation. writemsg takes the elements of matrix data in column-major order.

To limit the time that writemsg spends transferring messages from the target
processor, the optional argument timeout tells the message transfer process to
stop after timeout seconds. timeout is defined as the number of seconds
allowed to complete the write operation. You may find this useful for limiting
prolonged data transfer operations. If you omit the timeout option in the
syntax, write defaults to the global timeout defined in cc.

writemsg supports the following data types: uint8, int16, int32, single, and
double.

data = writemsg(rx,channelname,data) uses the global timeout setting
assigned to cc when you create the link.

Examples After you load a program to your target, configure a link in RTDX for write
access and use writemsg to write data to the target. Recall that the program
loaded on the target must define 'ichannel' and the channel must be
configured for write access.

cc=ccsdsp;
rx = cc.rtdx;
open(rx,'ichannel','w'); % Could use rx.open('ichannel','w')
enable(rx,'ichannel');
inputdata(1:25);
writemsg(rx,'ichannel',int16(inputdata));

As a further illustration, the following code snippet writes the messages in
matrix indata to the write-enabled channel specified by ichan. Note again that
this example works only when ichan is defined by the program on the target
and enabled for write access.

indata = [1 4 7; 2 5 8; 3 6 9];
3-230

writemsg
writemsg(cc.rtdx, 'ichan', indata);

The matrix indata is written column-wise to ichan. The preceding function
syntax is equivalent to:

writemsg(cc.rtdx, 'ichan', [1:9]);

See Also readmat, readmsg, write
3-231

writemsg
3-232

A

Hardware Supported by
MATLAB Link for CCS

This appendix provides the details about the hardware and simulators that work with the MATLAB
Link for CCS.

Supported Hardware for Links to CCS
IDE and RTDX (p. A-2)

Describes the hardware that works with the links,
embedded objects, and RTDX

Link Features Supported By Each
Hardware or Simulator Family (p. A-3)

Outlines which link features work with each supported
target, either hardware or simulators

A Hardware Supported by MATLAB Link for CCS

A-2
Introduction to Supported Hardware
This appendix contains the latest listings for the hardware that works with
MATLAB Link for CCS version 1.3. Generally the product supports both
boards and simulators from a given family. In some cases, only the simulators
work, as noted in the tables in the next sections.

Supported Hardware for Links to CCS IDE and RTDX
The MATLAB Link for Code Composer Studio Development Tools supports the
following boards produced by TI and others.

Supported Board Designation Board Description

C2407 DSK Starter kit for the C2407 processor

C27x Simulators Simulators for the C27x DSP family

C2812 DSK and Simulators DSP starter kit and simulators for the
C28x DSP family

C5510 Boards and Simulators Boards and simulators for the C55x DSP
family

C5402, C5416 DSK Boards
and Simulators

Boards and simulators for the C54x DSP
family

TMS320C6416 DSK and
Simulators

C6416 processor boards

TMS320C6701 EVM and
simulators

C6701 Evaluation Module

TMS320C6711 DSK and
simulators

C6711 DSP Starter Kit

TMS320C6713 DSK and
simulators

C6713 processor boards

Introduction to Supported Hardware
Link Features Supported By Each Hardware or
Simulator Family

Specific Link Features Supported For Each Board Family
Within the collection of hardware that MATLAB Link for Code Composer
Studio supports, some features of the link do not apply. In the next table, each
board family appears with headings that specify the support provided.

C6xxx simulators in CCS Digital signal processor simulators in
CCS. You can generate code to the
simulators if you have Embedded Target
for the TI TMS320C6000 DSP Platform
product, and use CCS and RTDX links
with them.

OMAP1510 Boards and
Simulators

Boards and simulators for the
OMAP1510. While OMAP5910 boards
and simulators may work, The
MathWorks has not verified their
performance.

TMS470R1x ARM7 processor. Supports the simulator
only.

TMS470R2x ARM9 processor

Supported Board Designation Board Description

Some Board Families Do Not Support All MATLAB Link for Code Composer Studio Functions

Board
Family

Hardware/
Simulators?

Debug
Mode?

Embedded Objects
(data manipulation)?

HIL
Function?

RTDX

C24xx Yes/No Yes No No No

C27xx No/Yes Yes No No No

C28xx Yes/Yes Yes Yes Yes Yes

C54xx Yes Yes Yes Yes Yes
A-3

A Hardware Supported by MATLAB Link for CCS

A-4
Debug mode includes those operations that CCS handles and that MATLAB
Link for Code Composer Studio enables you to use from MATLAB—a “Yes”
tells you that the listed hardware supports MATLAB interaction with CCS.
Embedded Objects support indicates that the board family supports using
objects in MATLAB to work with symbol table entries in CCS. A “Yes” in the
Hardware-in-the-Loop column means the board family supports using function
objects to run functions on your target from MATLAB.

MATLAB Link for Code Composer Studio provides components that work with
and use CCS IDE and TI Real-Time Data Exchange (RTDX™):

• Link for Code Composer Studio IDE — lets you use objects to create links
between CCS IDE and MATLAB ®. From the command window, you can run
applications in CCS IDE, send to and receive data from target memory, and
check the processor status, as well as other functions such as starting and
stopping applications running on your digital signal processors.

• Link for Real-Time Data Exchange Interface — provides a communications
pathway between MATLAB and digital signal processors installed on your
PC. Using objects in the MATLAB Link for Code Composer Studio, you open

C55xx Yes Yes Yes No Yes

C62xx Yes Yes Yes Yes Yes

C6416 DSK Yes Yes Yes Yes Yes

C6713 DSK Yes Yes Yes Yes Yes

C6701 EVM Yes Yes Yes Yes Yes

C6711 DSK Yes Yes Yes Yes Yes

OMAP1510 Yes Yes Yes No Yes

TMS470R1x Simulator Yes Yes No No

TMS470R2x ARM9
(OMAP)

Yes Yes No No

Some Board Families Do Not Support All MATLAB Link for Code Composer Studio Functions

Board
Family

Hardware/
Simulators?

Debug
Mode?

Embedded Objects
(data manipulation)?

HIL
Function?

RTDX

Introduction to Supported Hardware
channels to processors on boards in your computer and send and retrieve
data about the processors and executing applications, as well as send data to
the processes for use and get data from the applications.

• Embedded Objects—provides object methods and properties that let you
access and manipulate information stored in memory and registers on digital
signal processors, or in your Code Composer Studio project. From MATLAB
you gather information from you project, work with the information in
MATLAB, doing things like converting data types, creating function
declarations, or changing values, and return the information to your
project—all from the MATLAB command line.

• Hardware-in-the-Loop—enables you to write scripts in MATLAB that
exercise functions from your project on your target processor. From
MATLAB, you can generate data, send the data to your target and use a C
function in your program to manipulate the data on your hardware or
simulator. Afterwards, you return the output to MATLAB so you can analyze
the results.
A-5

A Hardware Supported by MATLAB Link for CCS

A-6

Index
A
abbreviate property names 1-10
about MATLAB Link for Code Composer Studio

Development Tools viii
abstract class 2-6
access properties 1-9
address property 2-114
apiversion 1-17
apiversion property 2-115
arrayorder property 2-116

B
base class 2-6
behavior 2-6
binarypt property 2-117
bitfield object 2-20
bitsperstorageunit property 2-117
boardnum 1-18
boardnum property 2-118

C
C and library functions compared 2-57
CCS IDE links

tutorial about using 1-23
ccsappexe 1-18
ccsappexe property 2-118
charconversion property 2-119
class 2-6
class diagram 2-6
class, abstract 2-6
class, base 2-6
class, container 2-7
constructor 2-6
container class 2-7
custom data types 2-105
custom type definitions 2-105

D
Data Type Manager 2-105
diagram

object 2-8
diagram, class 2-6

E
embedded object properties

address 2-114
apiversion 2-115
arrayorder 2-116
binarypt 2-117
bitsperstorageunit 2-117
boardnum 2-118
ccsappexe 2-118
endianness 2-119
label 2-122
link 2-123
member 2-124
membname 2-125
memoffset 2-126
name 2-128
numberofstorageunits 2-128
numChannels 2-128
page 2-130
postpad 2-131
prepad 2-132
procnum 2-132
represent 2-133
rtdx 2-135
rtdxChannel 2-136
storageunitspervalue 2-138
I-1

Index

I-2
timeout 2-140
typestring 2-142
value 2-142
wordsize 2-143

embedded object,bitfield 2-20
embedded object,enum 2-23
embedded object,function 2-45
embedded object,numeric 2-17
embedded object,pointer 2-26
embedded object,renum 2-35
embedded object,rnumeric 2-32
embedded object,rpointer 2-39
embedded object,rstring 2-42
embedded object,string 2-29
embedded object,structure 2-49
embedded objects, type 2-51
endianness property 2-119
enum object 2-23

F
filename property 2-121
function 2-7
function object 2-45

using declare 2-56
functions

library 2-57
library and C 2-57

functions, overloading 1-14

G
getting properties 1-11
H
hardware requirements for MATLAB Link for Code

Composer Studio 1-3

I
inheritance 2-7
inputnames property 2-121
inputvars property 2-122
instance 2-7

L
label property 2-122
library and C functions compared 2-57
library functions 2-57
link filters properties

getting 1-12
link properties

about 1-15, 1-17
apiversion 1-17
boardnum 1-18
ccsappexe 1-18
numchannels 1-18
page 1-19
procnum 1-19
quick reference table 1-16
rtdx 1-19
rtdxchannel 1-20
setting 1-12
timeout 1-21
version 1-21

link properties, details about 1-17
link property 2-123
links

closing CCS IDE 1-46
closing RTDX 1-63

Index
communications for RTDX 1-54
creating links for CCS IDE 1-27
creating links for RTDX 1-52
details 1-17
introducing the function object tutorial 2-75
introducing the links for CCS IDE tutorial

1-23
introducing the tutorial for using links for

RTDX 1-48
loading files into CCS IDE 1-29
quick reference 1-15
running applications using RTDX 1-56
selecting targets for CCS IDE 1-26
tutorial about using links for CCS IDE 1-23
tutorial about using links for RTDX 1-48
working with your target 1-32

M
MATLAB Link for Code Composer Studio

about viii
expected background for using xii
hardware and OS requirements 1-3
information for new users xii
listing link functions 1-67
requirements for TI software 1-4
requirements for use xi

member property 2-124
membname property 2-125
memoffset property 2-126
method 2-7

function 2-7

N
name property 2-128
numberofstorageunits property 2-128

numchannels 1-18
numChannels property 2-128
numeric object 2-17

O
object 2-8

aggregation 2-6
behavior 2-6
class 2-6
composition 2-6
constructor 2-6
function 2-7
handle 2-7
inheritance 2-7
instance 2-7
method 2-7
property 2-8
state 2-9
structure 2-9

object diagram 2-8
object diagramSee class diagram
object-based programming 2-8
object-oriented programming 2-8
offset property 2-130
OS requirements for MATLAB Link for Code

Composer Studio 1-3
outputvar property 2-130
overloading 1-14

P
page 1-19
page property 2-130
pointer object 2-26
postpad property 2-131
prepad property 2-132
I-3

Index

I-4
prerequisites for using MATLAB Link for Code
Composer Studio xi

processor registers, saved 3-18, 3-92
procnum 1-19
procnum property 2-132
programming

object-based 2-8
object-oriented 2-8

properties
abbreviating names 1-10
link properties 1-15
referencing directly 1-12
retrieving 1-9

function for 1-11
retrieving by direct property referencing 1-12
setting 1-9

property 2-8
charconversion 2-119
filename 2-121
inputnames 2-121
inputvars 2-122
offset 2-130
outputvar 2-130
savedregisters 2-138
size 2-137
type 2-141
typelist 2-141
typename 2-141
wordsize 2-143

property values
abbreviating 1-12

R
registers, saved 3-18, 3-92
renum object 2-35
represent property 2-133
rnumeric object 2-32
rpointer object 2-39
rstring object 2-42
rtdx 1-19
RTDX links

tutorial about using 1-48
rtdx property 2-135, 2-136
rtdxchannel 1-20

S
saved processor registers 3-18, 3-92
savedregisters property 2-138
set properties 1-9
size property 2-137
state 2-9
storageunitspervalue property 2-138
string object 2-29
structure 2-9
structure object 2-49
structure-like referencing 1-12
subclass 2-8

superclass 2-8
superclass 2-8

subclass 2-8

T
timeout 1-21
timeout property 2-140
tutorial for embedded objects and HIL 2-74
tutorial for links for CCS IDE 1-23
tutorial for links for RTDX 1-48
type object 2-51
type property 2-141
typedefs 2-107

about 2-105

Index
adding 2-107
managing 2-107
removing 2-107

typelist property 2-141
typename property 2-141
typestring property 2-142
typographical conventions (table) xvi

U
use CCS IDE links 1-23
use declare with function objects 2-56
use links for RTDX 1-48

V
value property 2-142
version 1-21

W
wordsize property 2-143
I-5

	Preface
	About MATLAB Link for Code Composer Studio Development Tools
	Specific Link Features Supported For Each Board Family

	Related Products
	Using This Guide
	Expected Background
	If You Are a New User
	If You Are an Experienced User

	Organization of the Document

	Configuration Information
	Typographical Conventions

	Introducing Links and Embedded Objects
	Requirements for MATLAB Link for Code Composer Studio
	Platform Requirements—Hardware and Operating System
	Texas Instruments Software

	Constructing Link Objects
	Example— Constructor for Links

	Properties and Property Values
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Example—Setting Link Property Values at Construction

	Setting Property Values with set
	Example—Setting Link Property Values Using set

	Retrieving Properties with get
	Example—Retrieving Link Property Values Using get

	Direct Property Referencing to Set and Get Values
	Example—Direct Property Referencing in Links

	Overloaded Functions for Links
	Link Properties
	Quick Reference to Link Properties
	Details About the Link Properties
	apiversion
	boardnum
	ccsappexe
	numchannels
	page
	procnum
	rtdx
	rtdxchannel
	timeout
	version

	Tutorial 1-1—Using Links and Embedded Objects
	Introducing the Tutorial
	Running the Interactive Tutorial

	Selecting Your Target
	Creating and Querying Links for CCS IDE
	Loading Files into CCS
	Working with Links and Data
	Working with Embedded Objects
	Using list
	Using read and write
	Using cast, convert, and size
	Using getmember

	Closing the Links or Cleaning Up CCS IDE

	Tutorial 1-2—Using Links for RTDX
	Introducing the Tutorial for Using RTDX
	Creating the Links
	Configuring Communications Channels
	Running the Application
	Closing the Links or Cleaning Up
	Listing the Functions for Links

	Objects for MATLAB Link Software
	Introduction to Objects
	Some Object-Oriented Programming Terms
	Definitions of Object-Oriented Terms
	Determining an Object Class

	About the Relationships Between Objects
	The Base Classes
	The Subclasses
	Other Classes

	Class Diagrams for the MATLAB Link for Code Composer Studio

	Numeric Objects—Their Methods and Properties
	Properties of Numeric Objects
	Methods of Numeric Objects

	Bitfield Objects—Their Methods and Properties
	Properties of Bitfield Objects
	Methods of Bitfield Objects

	Enum Objects—Their Methods and Properties
	Properties of Enum Objects
	Methods of Enum Objects

	Pointer Objects—Their Methods and Properties
	Properties of Pointer Objects
	Methods of Pointer Objects

	String Objects—Their Methods and Properties
	Properties of String Objects
	Methods of String Objects

	Rnumeric Objects—Their Methods and Properties
	Properties of Rnumeric Objects
	Methods of Rnumeric Objects

	Renum Objects—Their Methods and Properties
	Properties of Renum Objects
	Methods of Renum Objects

	Rpointer Objects—Their Methods and Properties
	Properties of Rpointer Objects
	Methods of Rpointer Objects

	Rstring Objects—Their Methods and Properties
	Properties of Rstring Objects
	Methods of Rstring Objects

	Function Objects—Their Methods and Properties
	Properties of Function Objects
	Methods of Function Objects

	Structure Objects—Their Methods and Properties
	Properties of Structure Objects
	Methods of Structure Objects

	Type Objects—Their Methods and Properties
	Properties of Type Objects
	Methods of Type Objects

	Constructing Objects That Access Bitfields
	Creating Function Objects
	When to Use declare to Provide the Function Declaration
	Differences Between Objects for Library Functions and C Functions
	Library Functions

	Examples of Creating Function Objects
	Case 1—Running a Function That Has a Typedef in the Function Prototype

	Creating Type Objects
	Working with Type Definitions in Projects
	To Add a Type Definition to an Existing ccsdsp Object

	Tutorial 2-1—Using Function Objects and Hardware-in-the-Loop
	Introducing the Tutorial
	Global functions for CCS IDE—no link required
	MATLAB Link for Code Composer Studio functions for working with embedded objects—uses links
	MATLAB Link for Code Composer Studio functions for working with embedded functions—uses function ...
	Running the Interactive Tutorial

	To Run the Hardware-in-the-Loop Tutorial
	Stopping and Saving the Tutorial Program

	Select Your Target and Load the Tutorial Project
	Initialize the Embedded C Variables and Use read and write
	Use read, write, cast, and convert with Objects
	Construct a function object
	Use Methods That Work with Function Objects
	Construct Different Objects and Work with Them
	Close The Tutorial and Clean Up

	Managing Custom Data Types with the Data Type Manager
	Adding Custom Type Definitions to MATLAB
	To Add a Typedef to MATLAB
	Create an object and load a program.
	Add a MATLAB type definition
	Add an enumerated type definition
	Add a structure typedef

	Reference for the Properties of Embedded Objects
	Property Reference Format and Contents
	address
	Description
	Characteristics
	Range

	apiversion
	Description
	Characteristics
	Range
	Examples

	arrayorder
	Description
	Characteristics
	Range
	Examples

	binarypt
	Description
	Characteristics
	Range
	Referrals

	bitsperstorageunit
	Description
	Characteristics
	Range
	Referrals

	boardnum
	Description
	Characteristics
	Range

	ccsappexe
	Description
	Characteristics
	Examples

	charconversion
	Description
	Characteristics
	Range

	endianness
	Description
	Characteristics
	Range
	Examples

	filename
	Description
	Characteristics
	Range

	inputnames
	Description
	Characteristics
	Range

	inputvars
	Description
	Characteristics
	Range

	label
	Description
	Characteristics
	Examples
	Referrals

	link
	Description
	Characteristics
	Examples
	Referrals

	Member
	Description
	Characteristics
	Examples

	Membname
	Description
	Characteristics
	Range
	Examples

	memboffset
	Description
	Characteristics
	Range
	Examples

	name
	Description
	Characteristics
	Range

	numberofstorageunits
	Description
	Characteristics
	Range

	numchannels
	Description
	Examples

	offset
	Description
	Characteristics

	outputvar
	Description
	Characteristics
	Range

	page
	Description
	Characteristics
	Range
	Examples

	postpad
	Description
	Characteristics

	prepad
	Description
	Characteristics

	procnum
	Description
	Range
	Description
	Characteristics
	Range

	represent
	Description
	Characteristics
	Range
	Referrals

	rtdx
	Description
	Characteristics
	Examples
	Referrals

	rtdxchannel
	Description
	Characteristics
	Range

	size
	Description
	Characteristics
	Range
	Examples

	savedregisters
	Description
	Characteristics
	Examples

	storageunitspervalue
	Description
	Characteristics
	Range
	Examples

	timeout
	Description
	Characteristics
	Range
	Examples

	type
	Description
	Characteristics

	typelist
	Description
	Characteristics

	typename
	Description
	Characteristics
	Examples

	typestring
	Description
	Examples

	value
	Description
	Characteristics
	Examples

	wordsize
	Description
	Characteristics
	Range

	Link Functions Reference
	Using the Link Function Reference
	Contents of Function Reference Pages

	Tables of Link Software Functions
	Link Functions—Alphabetical List
	Functions—Alphabetical List

	Hardware Supported by MATLAB Link for CCS
	Introduction to Supported Hardware
	Supported Hardware for Links to CCS IDE and RTDX
	Link Features Supported By Each Hardware or Simulator Family
	Specific Link Features Supported For Each Board Family

	Index

